如圖,正方形ABCD中,E是CD的中點(diǎn),EF⊥AE.求證:(1)EF平分∠AFC;(2)BF=3FC.

 (1)延長(zhǎng)FE,AD交于G.

先證ΔDEG≌ΔCEF,得∠G=∠EFC,

而∠G=∠GFA.

(2)先證ΔADE∽ΔECF,

得CF∶CE=DE∶DA=1∶2,

∵CE=ED,CD=CB,

從而CF∶CD=CF∶CB=1∶4.

∴BF=3CF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖正方形ABCD的邊長(zhǎng)為2cm,O是AB的中點(diǎn),也是拋物線的頂點(diǎn),OP⊥AB,兩半圓的直徑分別為OA與OB.拋物線經(jīng)過(guò)C、D兩點(diǎn),且關(guān)于OP對(duì)稱,則圖中陰影部分的面積之和為
 
cm2.(π取3.14,結(jié)果保留2個(gè)有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、如圖正方形ABCD的邊CD上有一點(diǎn)E,連接AE,以A為圓心,AE長(zhǎng)為半徑畫(huà)弧,交CB的延長(zhǎng)線于F,證明△ADE≌△ABF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖正方形ABCD中,E是邊BC上一動(dòng)點(diǎn),BC=nBE,DO⊥AE于點(diǎn)O,CO的延長(zhǎng)線交AB于精英家教網(wǎng)點(diǎn)F.
(1)當(dāng)n=2時(shí),DO=
 
AO;OE=
 
AO.
(2)當(dāng)n=3時(shí),求證
S四邊形AFCD
S正方形ABCD
=
11
18

(3)當(dāng)n=
 
時(shí),F(xiàn)是AB的5等分點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,如圖正方形ABCD內(nèi)一點(diǎn)E,滿足△CDE為正三角形,直線AE交BC于F點(diǎn),過(guò)E點(diǎn)的直線GH⊥AF,交AB于點(diǎn)G,交CD于點(diǎn)H.以下結(jié)論:
①∠AFC=105°;②GH=2EF;③
2
CE=EF+EH
;④
AE
EH
=
2
3

其中正確的有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄂州)如圖正方形ABCD的邊長(zhǎng)為4,E、F分別為DC、BC中點(diǎn).
(1)求證:△ADE≌△ABF.
(2)求△AEF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案