【題目】某商場(chǎng)購(gòu)進(jìn)一批單價(jià)為4元的日用品.若按每件5元的價(jià)格銷售,每月能賣出3萬(wàn)件;若按每件6元的價(jià)格銷售,每月能賣出2萬(wàn)件,假定每月銷售件數(shù)y(件)與價(jià)格x(元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售價(jià)格定為多少時(shí),才能使每月的利潤(rùn)最大?每月的最大利潤(rùn)是多少?
【答案】(1)(2)當(dāng)銷售價(jià)格定為6元時(shí),每月的利潤(rùn)最大,每月的最大利潤(rùn)為40000元
【解析】解:(1)由題意,可設(shè)y=kx+b,
把(5,30000),(6,20000)代入得:,解得:。
∴y與x之間的關(guān)系式為:。
(2)設(shè)利潤(rùn)為W,則
,
∴當(dāng)x=6時(shí),W取得最大值,最大值為40000元。
答:當(dāng)銷售價(jià)格定為6元時(shí),每月的利潤(rùn)最大,每月的最大利潤(rùn)為40000元。
(1)利用待定系數(shù)法求得y與x之間的一次函數(shù)關(guān)系式。
(2)根據(jù)“利潤(rùn)=(售價(jià)﹣成本)×售出件數(shù)”,可得利潤(rùn)W與銷售價(jià)格x之間的二次函數(shù)關(guān)系式,然后求出其最大值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于A(3,0),B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)M(,5)是拋物線上一點(diǎn),拋物線與拋物線關(guān)于y軸對(duì)稱,點(diǎn)A、B、M關(guān)于y軸的對(duì)稱點(diǎn)分別為點(diǎn)A′、B′、M′
(1)求拋物線C1的解析式;
(2)過(guò)點(diǎn)M′作M′E⊥x軸于點(diǎn)E,交直線A′C于點(diǎn)D,在x軸上是否存在點(diǎn)P,使得以A′、D. P為頂點(diǎn)的三角形與△AB′C相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)相等,則稱點(diǎn)P為等值點(diǎn).例如點(diǎn)
(1,1),(-2,-2),(,),…,都是等值點(diǎn).已知二次函數(shù)的
圖象上有且只有一個(gè)等值點(diǎn) ,且當(dāng)m≤x≤3時(shí),函數(shù) 的最小值為-9,最大值為-1,則m的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊長(zhǎng)和寬分別為60厘米和40厘米的長(zhǎng)方形鐵皮,要在它的四角截去四個(gè)相等的小正方形,折成一個(gè)無(wú)蓋的長(zhǎng)方體水槽,使它的底面積為800平方厘米.求截去正方形的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某草莓種植大戶,今年從草莓上市到銷售完需要20天,售價(jià)為15元/千克,成本y(元/千克)與第x天成一次函數(shù)關(guān)系,當(dāng)x=10時(shí),y=7,當(dāng)x=15時(shí),y=6.5.
(1)求成本y(元/千克)與第x天的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(2)求第幾天每千克的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?(利潤(rùn)=售價(jià)-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對(duì)角線翻折,會(huì)發(fā)現(xiàn)這其中還有更多的結(jié)論.
(發(fā)現(xiàn)與證明)中,,將沿翻折至,連結(jié).
結(jié)論1:與重疊部分的圖形是等腰三角形;
結(jié)論2:.
試證明以上結(jié)論.
(應(yīng)用與探究)
在中,已知,,將沿翻折至,連結(jié).若以、、、為頂點(diǎn)的四邊形是正方形,求的長(zhǎng).(要求畫出圖形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E是邊AC上一點(diǎn),線段BE垂直于∠BAC的平分線于點(diǎn)D,點(diǎn)M為邊BC的中點(diǎn),連接DM.
(1)求證: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有6個(gè)質(zhì)地和大小均相同的球,每個(gè)球只標(biāo)有一個(gè)數(shù)字,將標(biāo)有3,4,5的三個(gè)球放入甲箱中,標(biāo)有4,5,6的三個(gè)球放入乙箱中.
(1)小宇從甲箱中隨機(jī)模出一個(gè)球,求“摸出標(biāo)有數(shù)字是3的球”的概率;
(2)小宇從甲箱中、小靜從乙箱中各自隨機(jī)摸出一個(gè)球,若小宇所摸球上的數(shù)字比小靜所摸球上的數(shù)字大1,則稱小宇“略勝一籌”.請(qǐng)你用列表法(或畫樹狀圖)求小宇“略勝一籌”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是__________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com