【題目】如圖,王華同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行12m到達(dá)Q點(diǎn)時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部.已知王華同學(xué)的身高是1.6m,兩個路燈的高度都是9.6m.

(1)求兩個路燈之間的距離;

(2)當(dāng)王華同學(xué)走到路燈BD處時,他在路燈AC下的影子長是多少?

【答案】(1)兩個路燈之間的距離為18米(2)當(dāng)王華同學(xué)走到路燈BD處時,他在路燈AC下的影子長是3.6米

【解析】試題分析

依題意得到AP=BQ,設(shè)AP=BQ=xm,AB=2x+12m,易證得APM∽△ABD,,再由它可以求出x,進(jìn)而求出AB;
(2)首先要作出此時王華的影子如圖,

設(shè)王華走到路燈BD處頭的頂部為E,連接CE并延長交AB的延長線于點(diǎn)F,BF即為此時他在路燈AC的影子,容易知道EBF∽△CAF,再利用它們對應(yīng)邊成比例求出現(xiàn)在的影子.

1)由對稱性可知AP=BQ,設(shè)AP=BQ=xm,

MPBD∴△APM∽△ABD,

,

,

解得x=3m,

檢驗(yàn):當(dāng)x=3,2x+12=2×3+12=18≠0,

x=3是原方程的根,并且符合題意,

AB=2x+12=2×3+12=18m),

答:兩個路燈之間的距離為18米.

2如圖,設(shè)王華走到路燈BD處頭的頂部為E,連接CE并延長交AB的延長線于點(diǎn)F,則BF即為此時他在路燈AC的影子長,

設(shè)BF=ym

BEAC

∴△EBF∽△CAF

,

解得y=3.6m,

檢驗(yàn)當(dāng)y=3.6,y+18=3.6+18=21.60

y=3.6是分式方程的解.

答:當(dāng)王華同學(xué)走到路燈BD處時,他在路燈AC下的影子長是3.6米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共4個,某學(xué)習(xí)小組進(jìn)行摸球試驗(yàn),將球攪勻后從中隨機(jī)摸出一個球記下顏色,再放回,下表是活動進(jìn)行中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到黑球的次數(shù)m

23

33

60

130

202

251

摸到黑球的頻率

當(dāng)n很大時,估計從袋中摸出一個黑球的概率是______;

試估算口袋中白球有______個;

的條件下,若從中先換出一球,不放回,搖勻后再摸出一球,請用列表或樹狀圖的方法求兩次都摸到白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小紅同學(xué)用儀器測量一棵大樹AB的高度,在C處測得ADG=30°,在E處測得AFG=60°,CE=8米,儀器高度CD=1.5米,求這棵樹AB的高度(結(jié)果保留兩位有效數(shù)字,≈1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖,在矩形紙片ABCD中,AB=4,AD=12,將矩形紙片折疊,使點(diǎn)C落在AD邊上的點(diǎn)M處,折痕為PE,此時PD=3.

(1)求MP的值;

(2)在AB邊上有一個動點(diǎn)F,且不與點(diǎn)A,B重合.當(dāng)AF等于多少時,MEF的周長最?

(3)若點(diǎn)G,Q是AB邊上的兩個動點(diǎn),且不與點(diǎn)A,B重合,GQ=2.當(dāng)四邊形MEQG的周長最小時,求最小周長值.(計算結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對任意一個四位數(shù)n,如果千位與十位上的數(shù)字之和為9,百位與個位上的數(shù)字之和也為9,則稱n極數(shù),記為n= 其中,且x、y為整數(shù)

請任意寫出兩個極數(shù);

猜想任意一個極數(shù)是否是99的倍數(shù),請說明理由;

如果一個正整數(shù)a是另一個正整數(shù)b的平方,則稱正整數(shù)a是完全平方數(shù),若四位數(shù)m極數(shù),記寫出三個滿足是完全平方數(shù)的只需直接寫出結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探索發(fā)現(xiàn))

如圖1,是一張直角三角形紙片,,小明想從中剪出一個以為內(nèi)角且面積最大的矩形,經(jīng)過多次操作發(fā)現(xiàn),當(dāng)沿著中位線DE、EF剪下時,所得的矩形的面積最大,隨后,他通過證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為______

(拓展應(yīng)用)

如圖2,在中,BC邊上的高,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,求出矩形PQMN面積的最大值用含a、h的代數(shù)式表示;

(靈活應(yīng)用)

如圖3,有一塊缺角矩形”ABCDE,,,,,小明從中剪出了一個面積最大的矩形為所剪出矩形的內(nèi)角,直接寫出該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰OBC的邊OBx軸上,OBCBOB邊上的高CAOC邊上的高BE相交于點(diǎn)D,連接OD,AB,∠CBO=45°,在直線BE上求點(diǎn)M,使BMCODC相似,則點(diǎn)M的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是圓的直徑,點(diǎn)是圓上一點(diǎn),與過點(diǎn)的切線垂直,垂足為點(diǎn),直線的延長線相交于點(diǎn),平分,交于點(diǎn),連接

1)求證:平分;

2)求證:是等腰三角形;

3)若,,求圓的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DE分別是邊AC、BC的中點(diǎn),FBC延長線上一點(diǎn),∠F=B

(l)AB=1O,求FD的長;

(2)AC=BC.求證:CDEDFE .

查看答案和解析>>

同步練習(xí)冊答案