【題目】已知二次函數(shù) ,當(dāng) 時(shí),y有最小值1,則a=

【答案】
【解析】解:∵ y = x22ax+3 =(x-a)2-a2+3,
∴拋物線(xiàn)對(duì)稱(chēng)軸為直線(xiàn)x=a,開(kāi)口向上,
①當(dāng)-1a2時(shí),
即對(duì)稱(chēng)軸在 1 ≤ x ≤ 2之間,y的最小值是頂點(diǎn)的縱坐標(biāo)值,
即-a2+3=1,解得:a1=,a2=(與-1a2矛盾,舍去).
②當(dāng)a-1時(shí),
即對(duì)稱(chēng)軸在 1 ≤ x ≤ 2左側(cè),則當(dāng)x=-1時(shí),y有最小值,
即(-1-a)2-a2+3=1,解得:a=.
③當(dāng)a2時(shí),
即對(duì)稱(chēng)軸在 1 ≤ x ≤ 2右側(cè),則當(dāng)x=2時(shí),y有最小值,
即(2-a)2-a2+3=1,解得:a=(與a2矛盾,舍去).
綜上,a=.
所以答案是:.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)的最值,需要了解如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊由長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為x米.

(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在基地參加社會(huì)實(shí)踐話(huà)動(dòng)中,帶隊(duì)老師考問(wèn)學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的面積最大?下面是兩位學(xué)生爭(zhēng)議的情境:

請(qǐng)根據(jù)上面的信息,解決問(wèn)題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長(zhǎng);
(2)請(qǐng)你判斷誰(shuí)的說(shuō)法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,AD為等腰直角△ABC的高,點(diǎn)A和點(diǎn)C分別在正方形DEFG的邊DG和DE上,連接BG,AE.

(1)求證:BG=AE;
(2)將正方形DEFG繞點(diǎn)D旋轉(zhuǎn),當(dāng)線(xiàn)段EG經(jīng)過(guò)點(diǎn)A時(shí),(如圖②所示)
①求證:BG⊥GE;
②設(shè)DG與AB交于點(diǎn)M,若AG:AE=3:4,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從長(zhǎng)度分別為2、3、6、7、9的5條線(xiàn)段中任取3條作為三角形的邊,能組成三角形的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P在第一象限,⊙P與x軸相切于點(diǎn)Q,與y軸交于M(0,2),N(0,8)兩點(diǎn),則點(diǎn)P的坐標(biāo)是(
A.(5,3)
B.(3,5)
C.(5,4)
D.(4,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,Rt△ABC,∠ACB=90°,BC=6,AC=8,O為BC延長(zhǎng)線(xiàn)上一點(diǎn),CO=3,過(guò)O,A作直線(xiàn)l,將l繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),l與AB交于點(diǎn)D,與AC交于點(diǎn)E,當(dāng)l與OB重合時(shí),停止旋轉(zhuǎn);過(guò)D作DM⊥AE于M,設(shè)AD=x,SADE=S.

(1)用含x的代數(shù)式表示DM,AM的長(zhǎng);
(2)當(dāng)直線(xiàn)l過(guò)AC中點(diǎn)時(shí),求x的值;
(3)用含x的代數(shù)式表示AE的長(zhǎng);
(4)求S與x之間的函數(shù)關(guān)系式;
(5)當(dāng)x為多少時(shí),DO⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查廣西北部灣四市市民上班時(shí)最常用的交通工具的情況,隨機(jī)抽取了四市部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“A:自行車(chē),B:電動(dòng)車(chē),C:公交車(chē),D:家庭汽車(chē),E:其他”五個(gè)選項(xiàng)中選擇最常用的一項(xiàng),將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)在這次調(diào)查中,一共調(diào)查了名市民,扇形統(tǒng)計(jì)圖中,C組對(duì)應(yīng)的扇形圓心角是°;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若甲、乙兩人上班時(shí)從A、B、C、D四種交通工具中隨機(jī)選擇一種,則甲、乙兩人恰好選擇同一種交通工具上班的概率是多少?請(qǐng)用畫(huà)樹(shù)狀圖或列表法求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD,點(diǎn)M邊AB的中點(diǎn).
(1)如圖1,點(diǎn)G為線(xiàn)段CM上的一點(diǎn),且∠AGB=90°,延長(zhǎng)AG、BG分別與邊BC、CD交于點(diǎn)E、F.

①求證:BE=CF;
②求證:BE2=BCCE.
(2)如圖2,在邊BC上取一點(diǎn)E,滿(mǎn)足BE2=BCCE,連接AE交CM于點(diǎn)G,連接BG并延長(zhǎng)CD于點(diǎn)F,求tan∠CBF的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案