【題目】如圖,在平面直角坐標系中,直線與x和y軸分別交于點B和點C,與直線OA相交于點A(4,2),動點M在線段OA和射線AC上運動.
(1)求點B和點C的坐標.
(2)求△OAC的面積.
(3)是否存在點M,使△OMC的面積是△OAC的面積的?若存在,求出此時點M的坐標,若不存在,說明理由.
【答案】(1)點B的坐標為(6,0),點C的坐標為(0,6);(2)12;(3)M的坐標是:M(1, )或M(1,5)或(﹣1,7)
【解析】試題分析:(1)在y=-x+6中, 分別令x=0,y=0即可得到結論;
(2)根據三角形面積公式計算即可;
(3)根據三角形的面積公式可判斷M的橫坐標是1,然后把x=1分別代入OA和AC的解析式中計算對應的函數(shù)值即可得到M點的坐標.
試題解析:解:(1)設y = 0,則x = 6;設x = 0,則y = 6,故點B的坐標為(6,0),點C的坐標為(0,6);
(2)S△OAC = OC×xA=×6×4 =12;
(3)存在點M使S△OMC=S△OAC.
設M的坐標為(x,y);OA的解析式是y=mx,則4m =2,
解得:m=,則直線OA的解析式是:y=x.
∵當S△OMC= S△OAC時,即×OC×|x|=×12.
又∵OC=6,∴x =±1.
①當M在線段OA上時,x>0,所以x=1時,y=,則M的坐標是(1, );
②當M在射線AC:y=﹣x+6上時,由x=1,得y=5,則M的坐標是(1,5);由x=-1,得y=7,則M的坐標是(-1,7).
綜上所述:M的坐標是:M(1, )或M(1,5)或(﹣1,7).
科目:初中數(shù)學 來源: 題型:
【題目】某校七年級三班為配合國家級衛(wèi)生城市創(chuàng)建驗收,自愿組織參加環(huán)衛(wèi)整治活動,學校用兩張統(tǒng)計圖公布了該班學生參加本次活動的情況.小明、小華、小麗三個同學看了這張統(tǒng)計圖后,小明說:“該班共有25名學生參加了本次活動”小華說:“該班參加美化數(shù)目的學生占參加本次活動人數(shù)的40%”小麗說:“該班有6名學生清掃道路.”小明、小華、小麗三人說法正確的有( 。
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小東根據學習函數(shù)的經驗,對函數(shù)y= 的圖象與性質進行了探究.下面是小東的探究過程,請補充完整,并解決相關問題:
(1)函數(shù)y= 的自變量x的取值范圍是;
(2)表格是y與x的幾組對應值.
x | … | ﹣2 | ﹣1 | ﹣ | 0 |
| 1 |
| 2 |
| 3 | 4 | … |
y | … |
|
|
| 2 |
| 4 |
| 2 |
|
| m | … |
表中m的值為;
(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點. 根據描出的點,畫出函數(shù)y= 的大致圖象;
(4)結合函數(shù)圖象,請寫出函數(shù)y= 的一條性質: .
(5)如果方程 =a有2個解,那么a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,BC=4,∠B=60°,點E是邊AB上的一點,點F是邊CD上一點,將平行四邊形ABCD沿EF折疊,得到四邊形EFGC,點A的對應點為點C,點D的對應點為點G,則△CEF的面積 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,在直線CD上有一點P.
(1)如果P點在C、D之間運動時,問∠PAC,∠APB,∠PBD有怎樣的數(shù)量關系?請說明理由.
(2)若點P在C、D兩點的外側運動時(P點與點C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關系又是如何?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】銷售有限公司到某汽車制造有限公司選購A、B兩種型號的轎車,用300萬元可購進A型轎車10輛,B型轎車15輛;用300萬元可購進A型轎車8輛,B型轎車18輛.
(1)求A、B兩種型號的轎車每輛分別多少元?
(2)若該汽車銷售公司銷售一輛A型轎車可獲利8000元,銷售一輛B型轎車可獲利5000元,該汽車銷售公司準備用不超過400萬元購進A、B兩種型號轎車共30輛,且這兩種轎車全部售出后總獲利不低于20.4萬元,問:有幾種購車方案?在這幾種購車方案中,哪種獲利最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列各式:
13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;
13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;
13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;
∴13+23+33+43+53=(______ )2= ______ .
根據以上規(guī)律填空:
(1)13+23+33+…+n3=(______ )2=[ ______ ]2.
(2)猜想:113+123+133+143+153= ______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,C為線段BE上的一點,分別以BC和CE為邊在BE的同側作正方形ABCD和正方形CEFG,M、N分別是線段AF和GD的中點,連接MN
(1)線段MN和GD的數(shù)量關系是 , 位置關系是;
(2)將圖①中的正方形CEFG繞點C逆時針旋轉90°,其他條件不變,如圖②,(1)的結論是否成立?說明理由;
(3)已知BC=7,CE=3,將圖①中的正方形CEFG繞點C旋轉一周,其他條件不變,直接寫出MN的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我市某中學在創(chuàng)建“特色校園”的活動中,將奉校的辦學理念做成宣傳牌(CD),放置在教學樓的頂部(如圖所示)該中學數(shù)學活動小組在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿坡面AB向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度為i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點B距水平而AE的高度BH;
(2)求宣傳牌CD的高度.
(結果精確到0.1米.參考數(shù)據: ≈1.414, ≈1.732)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com