【題目】愛動腦筋的小明在學過用配方法解一元二次方程后,他發(fā)現二次三項式也可以配方,從而解決一些問題.
例如:;因此 有最小值是1,只有當 時,才能得到這個式子的最小值1.
同樣,因此有最大值是8,只有當 時,才能得到這個式子的最大值8.
(1)當x= 時,代數式﹣2(x﹣3)2+5有最大值為 .
(2)當x= 時,代數式2x2+4x+3有最小值為 .
(3)矩形自行車場地ABCD一邊靠墻(墻長10m),在AB和BC邊各開一個1米寬的小門(不用木板),現有能圍成14m長的木板,當AD長為多少時,自行車場地的面積最大?最大面積是多少?
【答案】(1)3,5;(2)-1,1;(3)32.
【解析】
(1)類比例子得出答案即可;
(2)根據題意利用配方法配成(1)中的類型,進一步確定最值即可;
(3)根據題意利用長方形的面積列出式子,利用(1)(2)的方法解決問題.
解:(1)在代數式-2(x-3)2+5中,當x=3時,有最大值5,
故答案為:3、5;
(2)∵2x2+4x+3=2(x2+2x+1-1)+3=2(x+1)2+1,
∴當x=-1時,代數式2x2+4x+3有最小值為1,
故答案為:-1、1;
(3)設AD=x,則AB=14-(x+x-1)+1=16-2x,
∵S=x(16-2x)=-2(x-4)2+32,
∴當AD=4m時,面積最大值為32m2.
科目:初中數學 來源: 題型:
【題目】如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1).
(1)以O點為位似中心在y軸的左側將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;
(2)B點的對應點B′的坐標是 ;C點的對應點C′的坐標是 ;
(3)在BC上有一點P(x,y),按(1)的方式得到的對應點P′的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD和正方形AEFG有一個公共點A,點G、E分別在線段AD、AB上,若將正方形AEFG繞點A按順時針方向旋轉,連接DG,在旋轉的過程中,你能否找到一條線段的長與線段DG的長度始終相等?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點O逆時針旋轉90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AD∥BE∥CF,它們依次交直線l1、l2于點A、B、C和點D、E、F,,AC=14;
(1)求AB、BC的長;
(2)如果AD=7,CF=14,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,科技小組準備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m,設AD的長為m,DC的長為m。
(1)求與之間的函數關系式;
(2)根據實際情況,對于(1)式中的函數自變量能否取值為4m,若能,求出的值,若不能,請說明理由;
(3)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數,求出滿足條件的所有圍建方案。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,的頂點E,F分別在BC,CD邊上,高AG與正方形的邊長相等,求的度數.
如圖,在中,,,點M,N是BD邊上的任意兩點,且,將繞點A逆時針旋轉至位置,連接NH,試判斷MN,ND,DH之間的數量關系,并說明理由.
在圖中,連接BD分別交AE,AF于點M,N,若,,,求AG,MN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列四個判斷:①當x>0時,y>0;②若a=-1,則b=3;③拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;④點C關于拋物線對稱軸的對稱點為E,點G、F分別在x軸和y軸上,當m=2時,四邊形EDGF周長的最小值為,其中,判斷正確的序號是( )
A.①②B.②③C.①③D.②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,學校準備在教學樓后面搭建一個簡易矩形自行車車棚,一邊利用教學樓的后墻(可利用的墻長為19m),另外三邊利用學校現有總長38m的鐵欄圍成.
(1)若圍成的面積為180m,試求出自行車車棚的長和寬;
(2)能圍成的面積為200m自行車車棚嗎?如果能,請你給出設計方案;如果不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com