【題目】如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,弦CD⊥AB,垂足為E,且PC2=PEPO.
(1)求證:PC是⊙O的切線.
(2)若OE:EA=1:2,PA=6,求⊙O的半徑.
【答案】
(1)證明:連結(jié)OC,如圖,
∵CD⊥AB,
∴∠PEC=90°,
∵PC2=PEPO,
∴PC:PO=PE:PC,
而∠CPE=∠OPC,
∴△PCE∽△POC,
∴∠PEC=∠PCO=90°,
∴OC⊥PC,
∴PC是⊙O的切線
(2)解:設(shè)OE=x,則EA=2x,OA=OC=3x,
∵∠COE=∠POC,∠OEC=∠OCP,
∴△OCE∽△OPC,
∴OC:OP=OE:OC,即3x:OP=x:3x,解得OP=9x,
∴3x+6=9x,解得x=1,
∴OC=3,
即⊙O的半徑為3.
【解析】本題考查了相似三角形的判定與性質(zhì):在判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.也考查了切線的判定方法.(1)連結(jié)OC,如圖,由PC2=PEPO和公共角可判斷△PCE∽△POC,則∠PEC=∠PCO=90°,然后根據(jù)切線的判定定理可判斷PC是⊙O的切線;(2)設(shè)OE=x,則EA=2x,OA=OC=3x,證明△OCE∽△OPC,利用相似比可表示出OP,則可列方程3x+6=9x,然后解出x即可得到⊙O的半徑.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用垂徑定理和切線的判定定理的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條;切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】書(shū)店舉行購(gòu)書(shū)優(yōu)惠活動(dòng):
①一次性購(gòu)書(shū)不超過(guò)100元,不享受打折優(yōu)惠;
②一次性購(gòu)書(shū)超過(guò)100元但不超過(guò)200元一律打九折;
③一次性購(gòu)書(shū)超過(guò)200元一律打七折.
小麗在這次活動(dòng)中,兩次購(gòu)書(shū)總共付款229.4元,第二次購(gòu)書(shū)原價(jià)是第一次購(gòu)書(shū)原價(jià)的3倍,那么小麗這兩次購(gòu)書(shū)原價(jià)的總和是元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是博文學(xué)校初三一班慧慧、聰聰兩名學(xué)生入學(xué)以來(lái)10次數(shù)學(xué)檢測(cè)成績(jī)(單位:分).
慧慧 | 116 | 124 | 130 | 126 | 121 | 127 | 126 | 122 | 125 | 123 |
聰聰 | 122 | 124 | 125 | 128 | 119 | 120 | 121 | 128 | 114 | 119 |
回答下列問(wèn)題:
(1)分別求出慧慧和聰聰成績(jī)的平均數(shù);
(2)分別計(jì)算慧慧和聰聰兩組數(shù)據(jù)的方差;
(3)根據(jù)(1)(2)你認(rèn)為選誰(shuí)參加全國(guó)數(shù)學(xué)競(jìng)賽更合適?并說(shuō)明理由;
(4)由于初三二班、初三三班和初三四班數(shù)學(xué)成績(jī)相對(duì)薄弱,學(xué)校打算派慧慧和聰聰分別參加三個(gè)班的數(shù)學(xué)業(yè)余輔導(dǎo)活動(dòng),求兩名學(xué)生分別在初三二班和初三三班的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,P為邊AB上一點(diǎn).
(1)如圖1,若∠ACP=∠B,求證:AC2=APAB;
(2)若M為CP的中點(diǎn),AC=2.
①如圖2,若∠PBM=∠ACP,AB=3,求BP的長(zhǎng);
②如圖3,若∠ABC=45°,∠A=∠BMP=60°,直接寫(xiě)出BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,點(diǎn)O是AB的中點(diǎn),且AB= ,將一塊直角三角板的直角頂點(diǎn)放在點(diǎn)O處,始終保持該直角三角板的兩直角邊分別與AC、BC相交,交點(diǎn)分別為D、E,則CD+CE=( )
A.
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程x2﹣3x+p=0(p≠0)的兩個(gè)不相等的實(shí)數(shù)根分別為a和b,且a2﹣ab+b2=18,則 + 的值是( )
A.3
B.﹣3
C.5
D.﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算與解方程.
(1)計(jì)算:( )﹣1﹣ ﹣(π﹣2016)0+9tan30°;
(2)解分式方程: +1= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【探究證明】
(1)某班數(shù)學(xué)課題學(xué)習(xí)小組對(duì)矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究,提出下列問(wèn)題,請(qǐng)你給出證明.
如圖1,矩形ABCD中,EF⊥GH,EF分別交AB,CD于點(diǎn)E,F(xiàn),GH分別交AD,BC于點(diǎn)G,H.求證: = ;
【結(jié)論應(yīng)用】
(2)如圖2,在滿足(1)的條件下,又AM⊥BN,點(diǎn)M,N分別在邊BC,CD上,若 = ,則 的值為;
【聯(lián)系拓展】
(3)如圖3,四邊形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,點(diǎn)M,N分別在邊BC,AB上,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2﹣4ax+b與x軸的一個(gè)交點(diǎn)A的坐標(biāo)為(3,0),與y軸交于點(diǎn)C.
(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)當(dāng)a=﹣1時(shí),將拋物線向上平移m個(gè)單位后經(jīng)過(guò)點(diǎn)(5,﹣7).
①求m的值及平移前、后拋物線的頂點(diǎn)P、Q的坐標(biāo).
②設(shè)平移后拋物線與y軸交于點(diǎn)D,問(wèn):在平移后的拋物線上是否存在點(diǎn)E,使得△ECD的面積是△EPQ的3倍?若存在,請(qǐng)求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com