【題目】如圖①,元旦期間,小明乘汽車從地出發(fā),經(jīng)過地到目的地地(三地在同一條直線上),假設(shè)汽車從到的過程都是勻速直線行駛.圖②表示小明離地的路程(km)與汽車從出發(fā)后行駛時間(h)之何的函數(shù)關(guān)系圖像.
(1)兩地間的路程為 km;
(2)求小明離地的路程與行駛時間之間的函數(shù)表達式;
(3)當(dāng)行駛時間在什么范圍時,汽車離地的路程不超過40 km?
【答案】(1)160;(2)當(dāng)時,表達式為:,當(dāng)時,表達式為:;(3).
【解析】
(1)根據(jù)圖象中的數(shù)據(jù)即可得到A,C兩地的距離;
(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)即可得到小明離地的路程與行駛時間之間的函數(shù)表達式;
(3)根據(jù)題意可以分到B地前和到B地前后兩種情況進行解答.
(1)由題意和圖象可得,
A,C兩地相距:120+40=160千米,
故答案為:160;
(2) 當(dāng)時,設(shè)路程與行駛時間之間的函數(shù)表達式:y=kx+b,
由圖象過點可得:
得
當(dāng)時,路程與行駛時間之間的函數(shù)表達式為:,
由于速度不變,經(jīng)過B地到大C地的時間為:
當(dāng)時,路程與行駛時間之間的函數(shù)表達式為:;
(3)由題意可得,
當(dāng)行駛時間時,汽車離地的路程不超過40 km.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將1張菱形紙片ABC的(∠ADC>90°)沿對角線BD剪開,得到△ABD和△BCD.再將△BCD以D為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)角α,使α=∠ADB,得到如圖2所示的△DB′C,連接AC、BB′,∠DAB=45°,有以下結(jié)論:①AC=BB′;②AC⊥AB;③∠CDA=90°;④BB′= AB,其中正確結(jié)論的序號是 . (把所有正確結(jié)論的序號都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個三位數(shù)n,如果n滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k= ,當(dāng)F(s)+F(t)=18時,求k的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象如圖,則下列說法:①;② 是方程的解;③若點,是這個函數(shù)的圖象上的兩點,且,則;④當(dāng),函數(shù)的值,則.其中正確的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程組的解x為非正數(shù),y為負數(shù).
(1)求a的取值范圍;
(2)化簡∣a-3∣+∣a+2∣;
(3)在a的取值范圍內(nèi),m是最大的整數(shù),n是最小的整數(shù),求(m+n)m-n的值;
(4)在a的取值范圍內(nèi),當(dāng)a取何整數(shù)時,不等式2ax+x>2a+1的解為x<1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與軸,軸分別交于點,函數(shù)與的圖像交于第四象限的點,且點的橫坐標(biāo)為1.
(1)求的值;
(2)觀察圖像,當(dāng)滿足 時,;
(3)在軸上有一點,過點作軸的垂線,分別交函數(shù)和的圖像于點.若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,對正方形ABCD及其內(nèi)部的每個點進行如下操作:把每個點的橫、縱坐標(biāo)都乘同一實數(shù)a,將得到的點先向右平移m個單位長度,再向上平移n個單位長度(m>0,n>0),得到正方形A′B′C′D′及其內(nèi)部的點,其中點A,B的對應(yīng)點分別為A′,B′.已知正方形ABCD內(nèi)部的一個點F經(jīng)過上述操作后得到的對應(yīng)點F′與點F重合,求點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點的坐標(biāo);
(2)將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標(biāo);
(3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線對稱?若是,請用實線條畫出對稱軸。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表記錄了一名球員在罰球線上投籃的結(jié)果,
投籃次數(shù)(n) | 50 | 100 | 150 | 209 | 250 | 300 | 350 |
投中次數(shù)(m) | 28 | 60 | 78 | 104 | 123 | 152 | 175 |
投中頻率(n/m) | 0.56 | 0.60 |
| 0.49 |
|
|
(1)計算并填寫表中的投中頻率(精確到0.01);
(2)這名球員投籃一次,投中的概率約是多少(精確到0.1)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com