【題目】如圖,在四邊形 ABCD 中,∠C+∠D=210°,E、F 分別是 AD,BC 上的點(diǎn),將四邊形 CDEF 沿直線 EF 翻折,得到四邊形 C′D′EF, C′F 交 AD 于點(diǎn) G,若△EFG 有兩個(gè)角相等,則∠EFG=______ °.
【答案】40 或 50
【解析】
作出輔助線,利用翻折前后的角相等得到∠1+∠GFC=∠1+2∠3=150°,再由三角形的內(nèi)角和定理得到∠3=∠2-30°,分情況討論即可解題,見詳解.
解:連接EF,如下圖,由翻折可知,∠3=∠EFC,
∵∠C+∠D=210°,
∴易得∠1+∠GFC=∠1+2∠3=150°,
∵∠1=180°-∠2-∠3,代入式得∠3=∠2-30°,
把代入得∠1+2∠2=210°,
若∠1=∠2,由式可得,∠1=∠2=70°,∠3=40°,
若∠1=∠3,由式可得,∠1=∠3=50°,∠2=80°,
若∠2=∠3,則不成立,說明此種情況不存在,
綜上∠EFG=40°或50°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)
(1)在平面直角坐標(biāo)系內(nèi)畫出該函數(shù)的圖象;
(2)當(dāng)自變量x=-4時(shí),函數(shù)y的值_________;
(3)當(dāng)x<0時(shí),請(qǐng)結(jié)合圖象,直接寫出y的取值范圍:_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△BDE都是等邊三角形,且A,E,D三點(diǎn)在一直線上.請(qǐng)你說明DA﹣DB=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AD 是 BC 邊上的高,且∠ACB=∠BAD,AE 平分∠CAD,交 BC于點(diǎn) E,過點(diǎn) E 作 EF∥AC,分別交 AB、AD 于點(diǎn) F、G.則下列結(jié)論:①∠BAC=90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B=2∠AEF,其中正確的有( )
A. 4 個(gè)B. 3 個(gè)C. 2 個(gè)D. 1 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的統(tǒng)計(jì)圖表示某體校射擊隊(duì)甲、乙兩名隊(duì)員射擊比賽的成績(jī),根據(jù)統(tǒng)計(jì)圖中的信息,下列結(jié)論正確的是( 。
A. 甲隊(duì)員成績(jī)的平均數(shù)比乙隊(duì)員的大
B. 乙隊(duì)員成績(jī)的平均數(shù)比甲隊(duì)員的大
C. 甲隊(duì)員成績(jī)的中位數(shù)比乙隊(duì)員的大
D. 甲隊(duì)員成績(jī)的方差比乙隊(duì)員的大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】花香村計(jì)劃改造一片林地,估計(jì)這片林地可種梨樹80~133棵.根據(jù)經(jīng)驗(yàn),若種100棵樹,果樹成熟后平均每棵樹上能結(jié)500個(gè)梨,在這個(gè)基礎(chǔ)上每多種一棵梨樹,平均每棵會(huì)少結(jié)3個(gè)梨,每少種一棵,平均每棵樹會(huì)多結(jié)4個(gè)梨.
(1)如果種植110棵梨樹,則總共能結(jié)多少個(gè)梨?
(2)設(shè)種植x棵梨樹,總共能結(jié)y個(gè)梨,
①當(dāng)80≤x≤100時(shí),求出y與x之間的函數(shù)關(guān)系式;
②當(dāng)100<x≤134時(shí),求出y與x之間的函數(shù)關(guān)系式;
(3)種多少棵梨樹,總共能結(jié)的梨數(shù)最多?最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,-2).
(1)求直線AB的表達(dá)式;
(2)若直線AB上有一動(dòng)點(diǎn)C,且,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一塊長為22 m,寬為17 m的矩形地面上,要修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條邊平行),剩余部分種上草坪,使草坪面積為300 m2.若設(shè)道路寬為x m,根據(jù)題意可列出方程為______________________________.
【答案】(22-x)(17-x)=300(或x2-39x+74=0)
【解析】試題分析:把所修的兩條道路分別平移到矩形的最上邊和最左邊,則剩下的草坪是一個(gè)長方形,根據(jù)長方形的面積公式列方程.設(shè)道路的寬應(yīng)為x米,由題意有(22﹣x)(17﹣x)=300,故答案為:(22﹣x)(17﹣x)=300.
考點(diǎn):由實(shí)際問題抽象出一元二次方程.
【題型】填空題
【結(jié)束】
17
【題目】x=1是關(guān)于x的一元二次方程x2+mx﹣5=0的一個(gè)根,則此方程的另一個(gè)根是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com