【題目】學(xué)習(xí)有理數(shù)得乘法后,老師給同學(xué)們這樣一道題目:計(jì)算:49×(﹣5),看誰算的又快又對(duì),有兩位同學(xué)的解法如下:
小明:原式=﹣×5=﹣=﹣249;
小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)對(duì)于以上兩種解法,你認(rèn)為誰的解法較好?
(2)上面的解法對(duì)你有何啟發(fā),你認(rèn)為還有更好的方法嗎?如果有,請(qǐng)把它寫出來;
(3)用你認(rèn)為最合適的方法計(jì)算:19×(﹣8)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA的方向是北偏東15°,OB的方向是西偏北50度.
(1)若∠AOC=∠AOB,則OC的方向是 ;
(2)OD是OB的反向延長(zhǎng)線,OD的方向是 ;
(3)∠BOD可看作是OB繞點(diǎn)O逆時(shí)針方向至OD,作∠BOD的平分線OE,OE的方向是 ;
(4)在(1)、(2)、(3)的條件下,∠COE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)已知:如圖,AD⊥BC于D,EG⊥BC與G,∠E=∠3,試問:AD是∠BAC的平分線嗎?若是,請(qǐng)說明理由.(在橫線上填寫正確的依據(jù)或證明步驟)
解答:是,理由如下:
∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°(垂直的定義)
∴AD∥EG
∴∠1=∠E
∠2=∠3
∵∠E=∠3(已知)
∴∠ =∠ ;
∴AD是∠BAC的平分線(角平分線的定義).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,O是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上,且∠DOE=90°,DE交OC于P,下列結(jié)論:
①圖中的全等三角形共有3對(duì);
②AD=CE;
③∠CDO=∠BEO;
④OC=DC+CE;
⑤△ABC的面積是四邊形DOEC面積的2倍.
正確的是 .(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形OAB中,半徑OA=4,∠AOB=120°,點(diǎn)C在上,OD⊥AC于點(diǎn)D,OE⊥BC于點(diǎn)E,當(dāng)點(diǎn)C從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段DE長(zhǎng)度的變化情況是( )
A.先變小,后變大
B.先變大,后變小
C.DE與OD的長(zhǎng)度保持相等
D.固定不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)
(1) 填空:
(a-b)(a+b)=________;
(a-b)(a2+ab+b2)=________;
(a-b)(a3+a2b+ab2+b3)=________.
(2) 猜想:
(a-b)(an-1+an-2b+…+abn-2+bn-1)=________ (其中n為正整數(shù),且n≥2).
(3) 利用(2)猜想的結(jié)論計(jì)算: 29-28+27-…+23-22+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)A(2,-1)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)是( )
A. (-2,-1) B. (-2,1) C. (2,1) D. (2,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α(0°<α<60°),分別以AB、BC為邊作等邊三角形ABE和等邊三角形BCD,連結(jié)CE,如圖1所示.
(1)直接寫出∠ABD的大。ㄓ煤恋氖阶颖硎荆
(2)判斷DC與CE的位置關(guān)系,并加以證明;
(3)在(2)的條件下,連結(jié)DE,如圖2,若∠DEC=45°,求α的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com