【題目】如圖,某公司計劃用32m長的材料沿墻建造的長方形倉庫,倉庫的一邊靠墻,已知墻長16m,設(shè)長方形的寬AB為xm.
(1)用x的代數(shù)式表示長方形的長BC;
(2)能否建造成面積為120㎡的長方形倉庫?若能,求出長方形倉庫的長和寬;若不能,請說明理由;
(3)能否建造成面積為160㎡的長方形倉庫?若能,求出長方形倉庫的長和寬;若不能,請說明理由.
【答案】(1)BC=32-2x(2)能 (3)不能
【解析】試題分析:(1)由AB+BC+CD=32,AB=CD=x,即可得BC;
(2)根據(jù)矩形的面積公式列出一元二次方程,解方程即可;
(3)根據(jù)矩形的面積公式列出一元二次方程,由判別式△<0即可得結(jié)果.
試題解析:(1)BC=32-2x
(2)能
由題知: x(32-2x)=120
化簡整理得(x-6)(x-10)=0
解得:x1=6,x2=10
經(jīng)檢驗x1=6 ,x2=10都是原方程的解但x1=6不符合題意,舍去
答:能建成面積為120㎡倉庫,此時長為12米,寬為10米.
(3)不能
由題知: x(32-2x)=160
化簡整理得:
此時
此方程無解
所以不能建造成面積為160㎡的長方形倉庫.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形內(nèi)有一點,它到三角形三邊的距離都相等,同時與三角形三個頂點的距離也相等,則這個三角形一定是( )
A. 等腰三角形 B. 等腰直角三角形
C. 等邊三角形 D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用反證法證明命題“在△ABC中,若∠A>∠B+∠C,則∠A>90°”時,應(yīng)先假設(shè)_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與坐標(biāo)軸分別交于點A、B,與直線交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當(dāng)點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Q作x軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外)。
(1)求點P運動的速度是多少?
(2)當(dāng)t為多少秒時,矩形PEFQ為正方形?
(3)當(dāng)t為多少秒時,矩形PEFQ的面積S最大?并求出最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,sinA=,BC=8,點D是AB的中點,過點B作CD的垂線,垂足為點E.
(1)求線段CD的長;
(2)求cos∠ABE的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=,AF=,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com