【題目】(1)操作發(fā)現(xiàn):如圖①,小明畫了一個等腰三角形ABC,其中AB=AC,在ABC的外側(cè)分別以AB,AC為腰作了兩個等腰直角三角形ABDACE,分別取BDCE,BC的中點M,N,G,連接GMGN.小明發(fā)現(xiàn)了:線段GMGN的數(shù)量關(guān)系是__________;位置關(guān)系是__________

(2)類比思考:

如圖②,小明在此基礎(chǔ)上進(jìn)行了深入思考.把等腰三角形ABC換為一般的銳角三角形,其中ABAC,其它條件不變,小明發(fā)現(xiàn)的上述結(jié)論還成立嗎?請說明理由.

(3)深入研究:

如圖③,小明在(2)的基礎(chǔ)上,又作了進(jìn)一步的探究.向ABC的內(nèi)側(cè)分別作等腰直角三角形ABDACE,其它條件不變,試判斷GMN的形狀,并給與證明.

【答案】(1)MG=NG MGNG;(2)成立,MG=NG,MGNG;(3)答案見解析

【解析】(1)利用SAS判斷出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,進(jìn)而判斷出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位線定理即可得出結(jié)論;

(2)同(1)的方法即可得出結(jié)論;

(3)同(1)的方法得出MG=NG,最后利用三角形中位線定理和等量代換即可得出結(jié)論.

1)連接BE,CD相交于H,如圖1,

∵△ABD△ACE都是等腰直角三角形,

∴AB=AD,AC=AE,∠BAD=∠CAE=90°

∴∠CAD=∠BAE,

∴△ACD≌△AEB(SAS),

∴CD=BE,∠ADC=∠ABE,

∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,

∴∠BHD=90°,

∴CD⊥BE,

M,G分別是BD,BC的中點,

∴MGCDMG=CD,

同理:NG∥BE且NG=BE,

∴MG=NG,MG⊥NG,

(2)連接CD,BE,相交于H,如圖2,

同(1)的方法得,MG=NG,MG⊥NG;

(3)連接EB,DC并延長相交于點H,如圖3.

同(1)的方法得,MG=NG,

同(1)的方法得,△ABE≌△ADC,

∴∠AEB=∠ACD,

∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,

∴∠DHE=90°,

同(1)的方法得,MG⊥NG.

∴△GMN是等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標(biāo)準(zhǔn)如下:每戶每月用水量不超過63時,水費按a/3收費;每戶每月用水量超過63時,不超過的部分每立方米仍按a元收費,超過的部分按c/3收費,該市某用戶今年3、4月份的用水量和水費如下表所示:

月份

用水量(m3)

收費()

3

5

7.5

4

9

27

(1)a、c的值,并寫出每月用水量不超過63和超過63時,水費與用水量之間的關(guān)系式;

(2)已知某戶5月份的用水量為83,求該用戶5月份的水費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABCACB=90°)的直角邊與正方形DEFG的邊長均為2,且ACDE在同一直線上,開始時點C與點D重合,讓ABC沿這條直線向右平移,直到點A與點E重合為止.設(shè)CD的長為x,ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則yx之間的函數(shù)關(guān)系的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營某種品牌的玩具,購進(jìn)時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.

1)不妨設(shè)該種品牌玩具的銷售單價為x元(x40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:

2)在(1)條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元.

3)在(1)條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的角平分線,點EAB邊上一點,AE=AC,EFBC,交AC于點F.下列結(jié)論正確的是( 。

①∠ADE=ADC;②CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由7塊顏色不同的正方形組成的長方形,已知中間小正方形的邊長為1,這個長方形的面積為(

A.45B.48C.63D.64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖的方式拼成一個正方形.

(1)按要求填空:

你認(rèn)為圖中的陰影部分的正方形的邊長等于   ;

請用兩種不同的方法表示圖中陰影部分的面積:

方法1:   

方法2:   

觀察圖,請寫出代數(shù)式(m+n)2,(m﹣n)2,mn這三個代數(shù)式之間的等量關(guān)系:   ;

(2)根據(jù)(1)題中的等量關(guān)系,解決如下問題:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.

(3)實際上有許多代數(shù)恒等式可以用圖形的面積來表示,如圖,它表示了   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點AD、C、F在同一直線上,AB=DE,AD=CF,添加下列條件后,仍不能判斷ABC≌△DEF的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=8,BC=6,矩形在直線上繞其右下角的頂點B向右旋轉(zhuǎn)90°

至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉(zhuǎn)90°至圖②位置……以此類推,這樣連續(xù)旋轉(zhuǎn)2018

次后,頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路線之和是_________

查看答案和解析>>

同步練習(xí)冊答案