【題目】水蜜桃是無錫市陽山的特色水果,水蜜桃一上市,水果店的老板用2000元購進(jìn)一批水密桃,很快售完;老板又用3300元購進(jìn)第二批水蜜桃,所購件數(shù)是第一批的倍,但進(jìn)價比第一批每件多了5元.

1)第一批水蜜桃每件進(jìn)價是多少元?

2)老板以每件65元的價格銷售第二批水蜜桃,售出80%后,為了盡快售完,剩下的決定打折促銷.要使得第二批水密桃的銷售利潤不少于288元,剩余的仙桃每件售價最多打幾折?(利潤=售價-進(jìn)價)

【答案】150;(26折.

【解析】

1)根據(jù)題意設(shè)第一批水蜜桃每件進(jìn)價是x元,利用第二批水密桃進(jìn)價建立方程求解即可;

2)根據(jù)題意設(shè)剩余的仙桃每件售價最多打m折,并建立不等式,求出其解集即可得出剩余的仙桃每件售價最多打幾折.

解:(1)設(shè)第一批水蜜桃每件進(jìn)價是x元,則有:

,解得,

所以第一批水蜜桃每件進(jìn)價是50.

2)由(1)得出第二批水密桃的進(jìn)價為:55元,數(shù)量為:件,

設(shè)剩余的仙桃每件售價最多打m折,則有:

解得,即最多打6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同一坐標(biāo)系中,拋物線y=(x﹣a)2與直線y=a+ax的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張長方形紙片ABCD折疊起來,使其對角頂點AC重合,DG重合.若長方形的長BC8,寬AB4,求:

1CF的長;

2)求三角形GED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.

1)如圖①,在菱形ABCD中,∠ABC=120°,點M,N分別在AD,CD上,且∠MBN=60°,試判斷四邊形DMBN是否為“等鄰邊四邊形”?請說明理由.

2)如圖②,在矩形ABCD中,AB=8,BC=12.5,點EBC上,且BE=6,在矩形ABCD內(nèi)或邊上,確定一點P,使四邊形ABEP為最大面積的“等鄰邊四邊形”,若能實現(xiàn),請求出最大面積;若不能實現(xiàn),說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高中學(xué)生身體素質(zhì),學(xué)校開設(shè)了A籃球、B足球、C跳繩、D羽毛球四種體育活動為了解學(xué)生對這四種體育活動的喜歡情況,在全校隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個被調(diào)查的對象必須選擇而且只能在四種體育活動中選擇一種)將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整)

1)這次調(diào)查中,一共調(diào)查了________名學(xué)生

2)請補全兩幅統(tǒng)計圖

3)若有3名喜歡跳繩的學(xué)生,1名喜歡足球的學(xué)生組隊外出參加一次聯(lián)誼活動,欲從中選出2人擔(dān)任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館普通票價20/,暑假為了促銷,新推出兩種優(yōu)惠卡

金卡售價600/,每次憑卡不再收費

銀卡售價150/,每次憑卡另收10

暑假普通票正常出售兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時,所需總費用為y

(1)分別寫出選擇銀卡、普通票消費時,yx之間的函數(shù)關(guān)系式;

(2)在同一坐標(biāo)系中,若三種消費方式對應(yīng)的函數(shù)圖象如圖所示,請求出點A、B、C的坐標(biāo);

(3)請根據(jù)函數(shù)圖象直接寫出選擇哪種消費方式更合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為正方形的邊上任意一點,在正方形內(nèi)部做等腰直角

1)如圖1,若,則_________(請直接寫出答案)

2)作關(guān)于的對稱點,連接于點

①補全圖形1;

②證明:四邊形ECHF為平行四邊形.

3)在(2)的條件下,連接,請直接寫出之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個平行四邊形中,兩對平行于邊的直線將這個平行四邊形分為九個小平行四邊形,如果原來這個平行四邊形的面積為,而中間那個小平行四邊形(陰影部分)的面積為20平方厘米,則四邊形的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在長方形ABCD中,AB=12cm,BC=10cm,點PA出發(fā),沿A→B→C→D的路線運動,到D停止;點QD點出發(fā),沿D→C→B→A路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒lcm、2cm,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運動時間x(秒)的圖象.

(1)求出a值;

(2)設(shè)點P已行的路程為y1(cm),點Q還剩的路程為y2(cm),請分別求出改變速度后,y1、y2和運動時間x(秒)的關(guān)系式;

(3)P、Q兩點都在BC邊上,x為何值時P、Q兩點相距3cm?

查看答案和解析>>

同步練習(xí)冊答案