【題目】如圖,已知⊙O半徑為10cm,弦AB垂直平分半徑OC,并交OC于點(diǎn)D.
(1)求弦AB的長(zhǎng);
(2)求弧AB的長(zhǎng),并求出圖中陰影部分面積.
【答案】(1) ;(2)
【解析】
(1)先利用垂徑定理得出AB=2BD,∠ODB=90°,OD=OC=5,進(jìn)而根據(jù)勾股定理求出BD,即可得出結(jié)論;
(2)先利用銳角三角函數(shù)求出∠BOD=60°,最后利用扇形的弧長(zhǎng)公式和扇形的面積公式即可得出結(jié)論.
解:(1)如圖,⊙O半徑為10cm,
∴OB=OC=10,
∵弦AB垂直平分半徑OC,
∴AB=2BD,∠ODB=90°,OD=OC=5,
在Rt△BOD中,根據(jù)勾股定理得,BD= =5,
∴AB=2BD=10cm;
(2)由(1)知,OD=5,
在Rt△BOD中,cos∠BOD==,
∴∠BOD=60°,
∵OC⊥AB,
∴∠AOB=2∠BOD=120°,
∴l(xiāng)弧AB===cm,
S陰影=S扇形AOB﹣S△AOB=﹣AB×OD=﹣×10×5=﹣25(cm2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)在軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,P為CD邊上一點(diǎn)(DP<CP),∠APB=90°.M在AB上,且∠APM=∠APD,過點(diǎn)B作BN∥MP交DC于點(diǎn)N.
(1)求證:四邊形PMBN是菱形;
(2)求證:ADBC=DPPC;
(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F,若DP=1,AD=2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),連接BC,AC,OD⊥BC于E.
(1)求證:OD∥AC;
(2)若BC=8,DE=3,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形, ,AC為直徑, DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)若AC=9,CE=3,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)運(yùn)動(dòng)隊(duì)有短跑、長(zhǎng)跑、跳遠(yuǎn)、實(shí)心球四個(gè)訓(xùn)練小隊(duì),現(xiàn)將四個(gè)訓(xùn)練小隊(duì)隊(duì)員情況繪制成如下不完整的統(tǒng)計(jì)圖:
(l)學(xué)校運(yùn)動(dòng)隊(duì)的隊(duì)員總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中短跑訓(xùn)練小隊(duì)所對(duì)應(yīng)圓心角的度數(shù)為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并標(biāo)明數(shù)據(jù);
(3)若在短跑訓(xùn)練小組中隨機(jī)選取2名同學(xué)進(jìn)行比賽,請(qǐng)用列舉法(畫樹狀圖或列表)求所選取的這兩名同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長(zhǎng)為4,頂點(diǎn)A,C分別在x軸、y軸的正半軸上,拋物線y=-x2+bx+c經(jīng)過點(diǎn)B,C兩點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),連接AC,BD,CD.
(1)求此拋物線的解析式;
(2)求此拋物線頂點(diǎn)D的坐標(biāo)和四邊形ABDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△A1B1C1是位似圖形.
(1)在網(wǎng)格上建立平面直角坐標(biāo)系,使得點(diǎn)A的坐標(biāo)為(﹣6,﹣1),點(diǎn)C1的坐標(biāo)為(﹣3,2),則點(diǎn)B的坐標(biāo)為 ;
(2)以點(diǎn)A為位似中心,在網(wǎng)格圖中作△AB2C2,使△AB2C2和△ABC位似,且位似比為1:2;
(3)在圖上標(biāo)出△ABC與△A1B1C1的位似中心P,并寫出點(diǎn)P的坐標(biāo)為 ,計(jì)算四邊形ABCP的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°~24°的桌面有利于學(xué)生保持軀體自然姿勢(shì).根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設(shè)計(jì)圖如圖1,AB可繞點(diǎn)A旋轉(zhuǎn),在點(diǎn)C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC=30 cm.
(1)如圖2,當(dāng)∠BAC=24°時(shí),CD⊥AB,求支撐臂CD的長(zhǎng);
(2)如圖3,當(dāng)∠BAC=12°時(shí),求AD的長(zhǎng).(結(jié)果保留根號(hào))
(參考數(shù)據(jù):sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com