【題目】如圖,在等腰△ABC中,∠BAC=90°,AB=AC=1,點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取一點(diǎn)E,使∠ADE=45°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍,并求出當(dāng)BD為何值時(shí)AE取得最小值?
(3)在AC上是否存在點(diǎn)E,使△ADE是等腰三角形?若存在,求AE的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;
(2)y=x2﹣x+1;;當(dāng)x=時(shí),y有最小值,最小值為;
(3)在AC上存在點(diǎn)E,使△ADE是等腰三角形,AE的長(zhǎng)為2﹣或.
【解析】
(1)由等腰直角三角形的性質(zhì)可得:∠B=∠C=∠ADE=45°,再根據(jù)三角形外角的性質(zhì)可得:∠ADC=∠B+∠BAD=∠ADE+∠CDE,從而得出∠BAD=∠CDE,最后根據(jù)有兩組對(duì)應(yīng)角相等的兩個(gè)三角形相似即可證出△ABD∽△DCE;
(2)由△ABD∽△DCE,可得:=,然后分別用x和y表示出CD、EC,代入到比例式中即可求出y關(guān)于x的函數(shù)關(guān)系式,再根據(jù)點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),即可求出x的取值范圍,最后根據(jù)二次函數(shù)求最值即可;
(3)根據(jù)等腰三角形腰的情況分類(lèi)討論:當(dāng)AD=DE時(shí),可得:△ABD≌△DCE,從而可得BD=CE,根據(jù)此等式列方程即可求出AE;當(dāng)AE=DE時(shí),可得:△ADE為等腰直角三角形,即DE⊥AC,由相似的性質(zhì)得AD⊥BC,根據(jù)三線合一可得D是BC中點(diǎn),再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AD=DC,從而得出:E也是AC的中點(diǎn),即可求出AE; 當(dāng)AD=AE時(shí),因?yàn)椤?/span>ADE=45°,可得∠DAE=90°,此時(shí)D與B重合,不符合題意.
(1)證明:
∵∠BAC=90°,AB=AC
∴∠B=∠C=∠ADE=45°
∵∠ADC=∠B+∠BAD=∠ADE+∠CDE
∴∠BAD=∠CDE
∴△ABD∽△DCE;
(2)由(1)得△ABD∽△DCE,
∴=
∵∠BAC=90°,AB=AC=1,
∴BC=,CD=﹣x,EC=1﹣y,
∴=,即y=x2﹣x+1=(x﹣)2+,
∵點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合)
∴0<BD<BC
即
當(dāng)x=時(shí),y有最小值,最小值為;
(3)當(dāng)AD=DE時(shí),△ABD≌△DCE,
∴BD=CE,
∴x=1﹣y,即x﹣x2=x,
∵x≠0,
∴等式左右兩邊同時(shí)除以x得:x=﹣1,將x=﹣1代入y= x2﹣x+1中,
∴AE=y=2﹣,
當(dāng)AE=DE時(shí),
∵∠ADE=45°
∴△ADE為等腰直角三角形
∴DE⊥AC,
∴AD⊥BC
∴D是BC中點(diǎn),
∴AD=DC
∴E也是AC的中點(diǎn),
所以,AE=;
當(dāng)AD=AE時(shí),
∵∠ADE=45°
∴∠DAE=90°,D與B重合,不符合題意;
綜上,在AC上存在點(diǎn)E,使△ADE是等腰三角形,
AE的長(zhǎng)為2﹣或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,對(duì)角線AC與BD相交于點(diǎn)E,AF平分∠BAC,交BD于點(diǎn)F.
(1)求證:EF+AC=AB;
(2)點(diǎn)C1從點(diǎn)C出發(fā),沿著線段CB向點(diǎn)B運(yùn)動(dòng)(不與點(diǎn)B重合),同時(shí)點(diǎn)A1從點(diǎn)A出發(fā),沿著BA的延長(zhǎng)線運(yùn)動(dòng),點(diǎn)C1與A1的運(yùn)動(dòng)速度相同,當(dāng)動(dòng)點(diǎn)C1停止運(yùn)動(dòng)時(shí),另一動(dòng)點(diǎn)A1也隨之停止運(yùn)動(dòng)。如圖2,A1F1平分∠BA1C1,交BD于點(diǎn)F1,過(guò)點(diǎn)F1作F1E1⊥A1C1,垂足為E1,請(qǐng)猜想E1F1,A1C1與AB三者之間的數(shù)量關(guān)系,并證明你的猜想;
(3)在(2)的條件下,當(dāng)A1E1=3,C1E1=2時(shí),求BD的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=kx在第一象限與雙曲線y=,y=分別交于A、B兩點(diǎn),過(guò)A、B兩點(diǎn)分別作x軸的垂線段,垂足分別為D(1,0)、C(3,0),梯形ABCD的面積為8.求三個(gè)函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小元設(shè)計(jì)的“過(guò)圓上一點(diǎn)作圓的切線”的尺規(guī)作圖過(guò)程.
已知:如圖,⊙O及⊙O上一點(diǎn)P.
求作:過(guò)點(diǎn)P的⊙O的切線.
作法:如圖,
①作射線OP;
②在直線OP外任取一點(diǎn)A,以點(diǎn)A為圓心,AP為半徑作⊙A,與射線OP交于另一點(diǎn)B;
③連接并延長(zhǎng)BA與⊙A交于點(diǎn)C;
④作直線PC;
則直線PC即為所求.
根據(jù)小元設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:∵ BC是⊙A的直徑,
∴∠BPC=90°(____________)(填推理的依據(jù)).
∴OP⊥PC.
又∵OP是⊙O的半徑,
∴PC是⊙O的切線(____________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解我市居民用水情況,在某小區(qū)隨機(jī)抽查了20戶(hù)家庭,并將這些家庭的月用水量進(jìn)行統(tǒng)計(jì),結(jié)果如下表:
月用水量(噸) | 4 | 5 | 6 | 8 | 13 |
戶(hù)數(shù) | 4 | 5 | 7 | 3 | 1 |
則關(guān)于這20戶(hù)家庭的月用水量,下列說(shuō)法正確的是( 。
A.中位數(shù)是5B.平均數(shù)是5C.眾數(shù)是6D.方差是6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角,墻DF足夠長(zhǎng),墻DE長(zhǎng)為9米,現(xiàn)用20米長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD,點(diǎn)C在墻DF上,點(diǎn)A在墻DE上,(籬笆只圍AB,BC兩邊).
(Ⅰ)根據(jù)題意填表;
BC(m) | 1 | 3 | 5 | 7 |
矩形ABCD面積(m2) |
|
|
|
|
(Ⅱ)能夠圍成面積為100m2的矩形花園嗎?如能說(shuō)明圍法,如不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是∠BAC內(nèi)的一條射線,BE⊥AD,且△CHM可由△BEM旋轉(zhuǎn)而得,則下列結(jié)論中錯(cuò)誤的是( )
A.M是BC的中點(diǎn)B.FM=EH
C.CF⊥ADD.FM⊥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y=-x2+bx+c經(jīng)過(guò)A(-3,0)和B(0,3)兩點(diǎn),將這條拋物線的頂點(diǎn)記為M,它的對(duì)稱(chēng)軸與x軸的交點(diǎn)記為N.
(1)求拋物線C的表達(dá)式;
(2)求點(diǎn)M的坐標(biāo);
(3)將拋物線C平移到拋物線C′,拋物線C′的頂點(diǎn)記為M′,它的對(duì)稱(chēng)軸與x軸的交點(diǎn)記為N′.如果以點(diǎn)M、N、M′、N′為頂點(diǎn)的四邊形是面積為16的平行四邊形,那么應(yīng)將拋物線C怎樣平移?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+bx+c的對(duì)稱(chēng)軸l交x軸于點(diǎn)A.
(1)若此拋物線經(jīng)過(guò)點(diǎn)(1,2),當(dāng)點(diǎn)A的坐標(biāo)為(2,0)時(shí),求此拋物線的解析式;
(2)拋物線y=x2+bx+c交y軸于點(diǎn)B,將該拋物線平移,使其經(jīng)過(guò)點(diǎn)A,B,且與x軸交于另一點(diǎn)C.若b2=2c,b≤﹣1,比較線段OB與OC+的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com