【題目】在正方形ABCD中,點E、F分別在邊BC、CD上,且∠EAF=∠CFF=45°
(1) 將△ADF繞點A順時針旋轉(zhuǎn)90 °,得到△ABG(如圖1),求證:BE+DF=EF;
(2) 若直線EF與AB、AD的延長線分別交于點M、N(如圖2),求證:
(3) 將正方形改為長與寬不相等的矩形,其余條件不變(如圖3),直接寫出線段EF、BE、DF之間的數(shù)量關(guān)系.
【答案】(1)見解析;(2)見解析;(3) =2.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可知AF=AG,∠EAF=∠GAE=45°,故可證△AEG≌△AEF;
(2)將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.由(1)知△AEG≌△AEF,則EG=EF.再由△BME、△DNF、△CEF均為等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后證明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代換即可證明EF2=ME2+NF2;
(3)延長EF交AB延長線于M點,交AD延長線于N點,將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△AGH,連結(jié)HM,HE.由(1)知△AEH≌△AEF,結(jié)合勾股定理以及相等線段可得(GH+BE)2+(BE-GH)2=EF2,所以2(DF2+BE2)=EF2.
(1)證明:∵△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,
∴AF=AG,∠FAG=90°,
∵∠EAF=45°,
∴∠GAE=45°,
在△AGE與△AFE中,
,
∴△AGE≌△AFE(SAS);
(2)證明:設(shè)正方形ABCD的邊長為a.
將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.
則△ADF≌△ABG,DF=BG.
由(1)知△AEG≌△AEF,
∴EG=EF.
∵∠CEF=45°,
∴△BME、△DNF、△CEF均為等腰直角三角形,
∴CE=CF,BE=BM,NF=DF,
∴a-BE=a-DF,
∴BE=DF,
∴BE=BM=DF=BG,
∴∠BMG=45°,
∴∠GME=45°+45°=90°,
∴EG2=ME2+MG2,
∵EG=EF,MG=BM=DF=NF,
∴EF2=ME2+NF2;
(3)解:EF2=2BE2+2DF2.
如圖所示,延長EF交AB延長線于M點,交AD延長線于N點,
將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△AGH,連結(jié)HM,HE.
由(1)知△AEH≌△AEF,
則由勾股定理有(GH+BE)2+BG2=EH2,
即(GH+BE)2+(BM-GM)2=EH2
又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE-GH)2=EF2,
即2(DF2+BE2)=EF2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】能簡便計算的簡便計算.
(1)[ +(-)]×
(2) ÷8+12.5%×
(3)×3.5+5.5×80%+0.8
(4)(-)×4×9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校一幢教學(xué)大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠AOB=90°,OE是∠AOB的平分線,P是OE上一動點,PC⊥PD,C、D分別在OA、OB上.求證:PC=PD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°, ∠BAD=40°,求∠BED的度數(shù);
(2)若△ABC的面積為80,BD=16,求E到BC邊的距離為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對某批乒乓球質(zhì)量進(jìn)行隨機調(diào)查,結(jié)果如下表;
隨機抽取的乒乓球數(shù) | 10 | 20 | 50 | 100 | 200 | 500 | 1000 |
優(yōu)等品數(shù) | 7 | 16 | 43 | 81 | 164 | 410 | 820 |
優(yōu)等頻率 | 0.7 | 0.8 | 0.86 | 0.81 | 0.82 | 0.82 |
(1)填表格中的空為_______.
(2)根據(jù)上表估計,在這批乒乓球中任取一個球,它為優(yōu)等品的概率大約是________.(保留兩位小數(shù)點)
(3)學(xué)校需要500個乒乓球的優(yōu)等品,那么可以推測出最有可能進(jìn)這批貨的乒乓球個數(shù)是多少合適?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”的方式給出分析過程)
(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com