【題目】如圖,直線SN⊥直線WE,垂足是點O,射線ON表示正北方向,射線OE表示正東方向.已知射線OB的方向是南偏東m°,射線OC的方向是北偏東n°,且m°的角與n°的角互余.

(1)寫出圖中與∠BOE互余的角:   

(2)若射線OA是∠BON的角平分線,探索∠BOS與∠AOC的數(shù)量關(guān)系.

【答案】1)∠BOS,∠COE;(2)∠AOCBOS

【解析】

1)由圖直接可知與∠BOE互余的角為∠BOS,∠BOS+CON+BOE+COE180°,再由m°的角與n°的角互余可得∠BOE+COE90°,據(jù)此可進(jìn)行解答;

2)由射線OA是∠BON的角平分線可得∠NOANOB,再由∠BOS與∠BON互補(bǔ)可求得∠NOABON180°﹣∠BOS=90°BOS;由∠NOC與∠BOS互余可得∠AOC=∠NOA﹣∠NOC90°BOS﹣(90°﹣∠BOS=BOS

解:(1)首先與∠BOE互余的角有∠BOS

m°的角與n°的角互余知∠BOS+CON90°,

∵∠BOS+CON+BOE+COE180°,

∴∠BOE+COE90°,

與∠BOE互余的角有∠BOS,∠COE,

故答案為:∠BOS,∠COE;

2)∠AOCBOS

∵射線OA是∠BON的角平分線,

∴∠NOANOB

∵∠BOS+BON180°,

∴∠BON180°﹣∠BOS

NOABON90°BOS,

∵∠NOC+BOS90°,∠NOC90°﹣∠BOS,

∴∠AOC=∠NOA﹣∠NOC90°BOS﹣(90°﹣∠BOS)=BOS

∴∠AOCBOS

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中:

3x=﹣4系數(shù)化為1x=﹣;

52x移項得x52;

去分母得22x1)=1+3x3);

22x1)﹣3x3)=1去括號得4x23x91

其中正確的個數(shù)有( 。

A. 0 B. 1 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BC>AB>AC.甲、乙兩人想在BC上取一點P,使得∠APC=2∠ABC,其作法如下: (甲)作AB的中垂線,交BC于P點,則P即為所求
(乙)以B為圓心,AB長為半徑畫弧,交BC于P點,則P即為所求
對于兩人的作法,下列判斷何者正確?(

A.兩人皆正確
B.兩人皆錯誤
C.甲正確,乙錯誤
D.甲錯誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,D是半圓上的一點,∠DOB=75°,DC交BA的延長線于E,交半圓于C,且CE=AO,求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列解題過程的空白處填上適當(dāng)?shù)膬?nèi)容(推理的理由或數(shù)據(jù)).

如圖,,,那么嗎?說明理由.

解:,理由如下:

因為,(已知)

所以

所以__________________).

所以(_________________________________).

所以__________________________________).

(______________________________________).

因為,

所以

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段MN=8,C是線段MN上一動點,在MN的同側(cè)分別作等邊△CMD和等邊△CNE.
(1)如圖①,連接DN與EM,兩條線段相交于點H,求證ME=DN,并求∠DHM的度數(shù);

(2)如圖②,過點D、E分別作線段MN的垂線,垂足分別為F、G,問:在點C運(yùn)動過程中,DF+EG的長度是否為定值,如果是,請求出這個定值,如果不是請說明理由;

(3)當(dāng)點C由點M移到點N時,點H移到的路徑長度為(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中,線段a,b,c,d的端點在格點上,通過平移其中兩條線段,使得和第三條線段首尾相接組成三角形,則能組成三角形的不同平移方法有(
A.3種
B.6種
C.8種
D.12種

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應(yīng)漲價多少元?
(2)若該商場單純從經(jīng)濟(jì)角度看,每千克這種水果漲價多少元,能使商場獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,當(dāng)且點在直線的上方時,解決下列問題:(友情提示:,,

1)①若,則的度數(shù)為  

②若,則的度數(shù)為  

2)由(1)猜想的數(shù)量關(guān)系,并說明理由.

3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案