【題目】在矩形紙片ABCD中,AB=6,AD=10.如圖所示,折疊紙片,使點(diǎn)A落在BC邊上的A′處,折痕為PQ.當(dāng)點(diǎn)A′在BC邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng).若限定點(diǎn)P、Q分別在AB、AD邊上移動(dòng),則點(diǎn)A′在BC邊上可移動(dòng)的最大距離為( 。
A.8cmB.6cmC.4cmD.2cm
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D是∠AOB的平分線OC上任意一點(diǎn),過(guò)D作DE⊥OB于E,以DE為半徑作⊙D,
①判斷⊙D與OA的位置關(guān)系, 并證明你的結(jié)論。
②通過(guò)上述證明,你還能得出哪些等量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,∠B=60°,AB=2cm,E、F分別是BC、CD的中點(diǎn),連接AE、EF、AF,則△AEF的周長(zhǎng)為( 。
A.2cmB.3cmC.4cmD.3cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=k1x+b 與反比例函數(shù) 的圖象交于點(diǎn)A(2,m)和B(﹣6,﹣2),與y軸交于點(diǎn)C.
(1)y1=___,y2= ;
(2)根據(jù)函數(shù)圖象可知,當(dāng) y1<y2時(shí),x的取值范圍是 ;
(3)過(guò)點(diǎn)A作AD⊥x軸于點(diǎn)D,求△ABD的面積.
(4)點(diǎn)P是反比例函數(shù)圖象上一點(diǎn),△POD的面積是5,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(7分)(2015黃石)如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點(diǎn).
(1)求BC的長(zhǎng);
(2)過(guò)點(diǎn)D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的對(duì)角線相交于點(diǎn).
(1)求證:四邊形為菱形;
(2)垂直平分線段于點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,AC=BC,點(diǎn)D為AB中點(diǎn).∠GDH=90°,∠GDH繞點(diǎn)D旋轉(zhuǎn),DG,DH分別與邊AC,BC交于E,F兩點(diǎn).下列結(jié)論:①AE+BF=AB;②AE2+BF2=EF2;③S四邊形CEDF=S△ABC;④△DEF始終為等腰直角三角形.其中正確的是( )
A.①②④B.①②③
C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜公司收購(gòu)蔬菜進(jìn)行銷售的獲利情況如下表所示:
銷售方式 | 直接銷售 | 粗加工后銷售 | 精加工后銷售 |
每噸獲利/元 | 100 | 250 | 450 |
現(xiàn)在該公司收購(gòu)了140噸蔬菜,已知該公司每天能精加工蔬菜6噸或粗加工蔬菜16噸(兩種加工不能同時(shí)進(jìn)行)。
(1)如果要求在18天內(nèi)全部銷售完這140噸蔬菜,請(qǐng)完成下列表格:
銷售方式 | 全部直接銷售 | 全部粗加工銷售 | 盡量精加工,剩 余部分直接銷售 |
獲利/元 |
(2)如果先進(jìn)行精加工,然后進(jìn)行粗加工,要求在15天內(nèi)剛好加工完140噸蔬菜,則應(yīng)如何分配加工時(shí)間?
(3)如果要求蔬菜都要加工后銷售,且公司獲利不能少于42200元,問(wèn):至少將多少噸蔬菜進(jìn)行精加工?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com