【題目】如圖,拋物線yax2+bx+c的對稱軸是x,小亮通過觀察得出了下面四個結論:①c0,②ab+c0,③2a3b0,④5b2c0.其中正確的有( 。

A. 1B. 2C. 3D. 4

【答案】C

【解析】

由拋物線與y軸的交點可對①進行判斷;由于當x=﹣1時,y0,得到ab+c0,則可對②進行判斷;由拋物線開口方向得到a0,再根據(jù)對稱軸為直線x=﹣0,得到b0,且2a+3b0,則可對③進行判斷;把a=﹣b代入ab+c0可對④進行判斷.

∵拋物線與y軸的交點在x軸下方,

c0,所以①正確;

∵當x=﹣1時,y0,即ab+c0,所以②正確;

∵拋物線開口向上,

a0,

∵拋物線的對稱軸為直線x=﹣0

b0,2a+3b0,所以③錯誤;

2a+3b0,

a=﹣b

∴﹣bb+c0,即5b2c0,所以④正確.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:

甲林場

乙林場

購樹苗數(shù)量

銷售單價

購樹苗數(shù)量

銷售單價

不超過1000棵時

4/

不超過2000棵時

4/

超過1000棵的部分

3.8/

超過2000棵的部分

3.6/

設購買白楊樹苗x棵,到兩家林場購買所需費用分別為y(元)、y(元).

1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為   元,若都在乙林場購買所需費用為   元;

2)分別求出y、yx之間的函數(shù)關系式;

3)如果你是該村的負責人,應該選擇到哪家林場購買樹苗合算,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y-x+2分別交x軸、y軸于點AB,拋物線y=﹣x2+bx+c經(jīng)過點A、B.點Px軸上一個動點,過點P作垂直于x軸的直線分別交拋物線和直線AB于點E和點F.設點P的橫坐標為m

1)點A的坐標為   

2)求這條拋物線所對應的函數(shù)表達式.

3)點P在線段OA上時,若以B、E、F為頂點的三角形與△FPA相似,求m的值.

4)若E、F、P三個點中恰有一點是其它兩點所連線段的中點(三點重合除外),稱E、F、P三點為“共諧點”.直接寫出EFP三點成為“共諧點”時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AEBF交于點O,點OCG上,根據(jù)尺規(guī)作圖的痕跡,判斷下列說法不正確的是( 。

A. AE、BF是△ABC的內角平分線

B. CG也是△ABC的一條內角平分線

C. AOBOCO

D. O到△ABC三邊的距離相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某海域,一艘海監(jiān)船在P處檢測到南偏西45°方向的B處有一艘不明船只,正沿正西方向航行,海監(jiān)船立即沿南偏西60°方向以40海里/小時的速度去截獲不明船只,經(jīng)過1.5小時,剛好在A處截獲不明船只,求不明船只的航行速度.(≈1.41,≈1.73,結果保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)ykx+b的圖象經(jīng)過(﹣4,﹣2),(18)兩點.

1)求該一次函數(shù)的表達式;

2)如圖,該一次函數(shù)的圖象與反比例函數(shù)y的圖象相交于點A,B,與y軸交于點C,且ABBC,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點EBC上一點,連接AE,點FAE上一點,連接FC,若∠BAE=∠EFCCFCD,ABBC32AF4,則FC的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場用2500元購進A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價、標價如下表所示.

類型

價格

A

B

進價(元/盞)

40

65

標價(元/盞)

60

100

1)這兩種臺燈各購進多少盞?

2)在每種臺燈銷售利潤不變的情況下,若該商場計劃銷售這批臺燈的總利潤至少為1400元,問至少需購進B種臺燈多少盞?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①、圖②均是8×8的正方形網(wǎng)格,每個小正方形的頂點稱為格點,點A、B、M、N均落在格點上,在圖①、圖②給定的網(wǎng)格中按要求作圖.

1)在圖①中的格線MN上確定一點P,使PAPB的長度之和最小

2)在圖②中的格線MN上確定一點Q,使∠AQM=∠BQM

要求:只用無刻度的直尺,保留作圖痕跡,不要求寫出作法.

查看答案和解析>>

同步練習冊答案