【題目】如圖所示,點(diǎn)P在∠AOB內(nèi),點(diǎn)M、N分別是點(diǎn)P關(guān)于AOBO所在直線(xiàn)的對(duì)稱(chēng)點(diǎn).

1)若PEF的周長(zhǎng)為20,求MN的長(zhǎng).

2)若∠O=50°,求∠EPF的度數(shù).

3)請(qǐng)直接寫(xiě)出∠EPF與∠O的數(shù)量關(guān)系是_____________________________

【答案】(1)20;(2)80°;(3)∠EPF= 180°-2∠O

【解析】

1)根據(jù)軸對(duì)稱(chēng)的性質(zhì)可得EM=EP,FP=FN,進(jìn)而推出MN=EM+EF+FN=EP+EF+FP=PEF的周長(zhǎng)即可;

2)由(1)及等腰三角形的性質(zhì)、四邊形的內(nèi)角和找出∠M+N與∠O、∠EPF與∠O的關(guān)系即可;

3)由(2)可直接得到∠EPF= 180°-2O.

解:(1)∵點(diǎn)M、N分別是點(diǎn)P關(guān)于AO、BO所在直線(xiàn)的對(duì)稱(chēng)點(diǎn).

OA垂直平分PMOB垂直平分PN,

EM=EP,FP=FN

MN=EM+EF+FN=EP+EF+FP=PEF的周長(zhǎng),

又∵PEF的周長(zhǎng)為20,

MN=20 cm.

2)由(1)知:EM=EPFP=FN,

∴∠PEF=2M,∠PFE=2N

∵∠PCE=PDF=90°,

∴在四邊形OCPD中,∠CPD+O=180°,

又∵在△PMN中,∠MPN+M+N=180°,且∠CPD+O=180°,

∴∠M+N=O=50°.

∴在△PEF中,∠EPF +PEF+PFE=EPF +2M +2N =180°,

即∠EPF=180°-2M -2N =180°-2(M +N)= 180°-2O=80°.

3)由(2)可直接得到∠EPF= 180°-2O.

故答案為:∠EPF= 180°-2O.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市在黨中央實(shí)施“精準(zhǔn)扶貧”政策的號(hào)召下,大力開(kāi)展科技扶貧的惠農(nóng)富農(nóng),老張?jiān)诳萍既藛T的指導(dǎo)下,改良柑橘品種,去年他家的柑橘喜獲豐收,而且質(zhì)優(yōu)味美,客商聞?dòng)嵡皝?lái)采購(gòu),經(jīng)協(xié)商:采購(gòu)價(jià)y(元/噸)與采購(gòu)量x(噸)之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式;
(2)老張種植柑橘的成本是800元/噸,當(dāng)客商采購(gòu)量是多少時(shí),老張?jiān)谶@次銷(xiāo)售柑橘時(shí)獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD內(nèi)有一點(diǎn)F,F(xiàn)BFC分別平分∠ABC和∠BCD,點(diǎn)E為矩形ABCD外一點(diǎn),連接BE,CE.現(xiàn)添加下列條件:①EBCF,CEBF;BE=CE,BE=BF;BECF,CEBE;BE=CE,CEBF,其中能判定四邊形BECF是正方形的共有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用下列邊長(zhǎng)相同的正多邊形組合,能夠鋪滿(mǎn)地面不留縫隙的是()

A. 正八邊形和正三角形 B. 正五邊形和正八邊形

C. 正六邊形和正三角形 D. 正六邊形和正五邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)零件如圖所示

1)請(qǐng)說(shuō)明∠BDC >A

2)按規(guī)定∠A等于90°,∠B和∠C應(yīng)分別等于32°21°,檢驗(yàn)工人量得∠BDC等于148°,就斷定這個(gè)零件不合格,這是為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉行“建國(guó)70周年”征文比賽,已知每篇參賽征文成績(jī)記m(60≤m≤100),組委會(huì)從1000篇征文隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了它們的成績(jī),并繪制了如下不完整的兩幅統(tǒng)計(jì)圖表.

請(qǐng)根指以上信息,解答下列問(wèn)題

(1)征文比賽成績(jī)頻數(shù)分布表中,a= b= ,c=

(2)補(bǔ)全征文比賽成績(jī)頻數(shù)分布直方圖;

(3)80分以上(80)的征文將被評(píng)為一等獎(jiǎng),試估計(jì)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABC中,∠A155°,第一步:在ABC的上方確定點(diǎn)A1,使∠A1BA=∠ABC,∠A1CA=∠ACB;第二步:在A1BC的上方確定點(diǎn)A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA;,照此繼續(xù),最多能進(jìn)行_____步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)M為對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)A,C重合),過(guò)點(diǎn)M作ME⊥AD,MF⊥DC,垂足分別為E,F(xiàn),則四邊形EMFD面積的最大值為( )

A.6
B.12
C.18
D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑為5,P為⊙O上一點(diǎn),P(4,3),PC、PD為⊙O的弦,分別交y軸正半軸于E、F,且PE=PF,連CD,設(shè)直線(xiàn)CD為y=kx+b,則k=

查看答案和解析>>

同步練習(xí)冊(cè)答案