【題目】如圖,小賢為了體驗四邊形的不穩(wěn)定性,將四根木條用釘子釘成一個矩形框架ABCD,B與D兩點之間用一根橡皮筋拉直固定,然后向右扭動框架,觀察所得四邊形的變化,下列判斷錯誤的是(
A.四邊形ABCD由矩形變?yōu)槠叫兴倪呅?/span>
B.BD的長度增大
C.四邊形ABCD的面積不變
D.四邊形ABCD的周長不變

【答案】C
【解析】解:∵矩形框架ABCD,B與D兩點之間用一根橡皮筋拉直固定,然后向右扭動框架, ∴AD=BC,AB=DC,
∴四邊形變成平行四邊形,
故A正確;
BD的長度增加,
故B正確;
∵拉成平行四邊形后,高變小了,但底邊沒變,
∴面積變小了,故C錯誤;
∵四邊形的每條邊的長度沒變,
∴周長沒變,
故D正確,
故選C.
由將四根木條用釘子釘成一個矩形框架ABCD,B與D兩點之間用一根橡皮筋拉直固定,然后向右扭動框架,由平行四邊形的判定定理知四邊形變成平行四邊形,由于四邊形的每條邊的長度沒變,所以周長沒變;拉成平行四邊形后,高變小了,但底邊沒變,所以面積變小了,BD的長度增加了.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù) 與二次函數(shù) 在同一坐標系中的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F.切點為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若KG2=KDGE,試判斷AC與EF的位置關(guān)系,并說明理由;
(3)在(2)的條件下,若sinE= ,AK=2 ,求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)開展“節(jié)約用水,從我做起”活動,下表是從該小區(qū)抽取的10個家庭,8月份比7月份節(jié)約用水情況統(tǒng)計:

節(jié)水量(m3

0.2

0.3

0.4

0.5

家庭數(shù)(個)

1

2

3

4

那么這10個家庭8月份比7月份的節(jié)水量的平均數(shù)是(
A.0.5m3
B.0.4m3
C.0.35m3
D.0.3m3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大樓AD與塔CB之間的距離AC長為27m,某人在樓底A處測得塔頂?shù)难鼋菫?0°,爬到樓頂D處測得塔頂B的仰角為30°,分別求大樓AD的高與塔BC的高(結(jié)果精確到0.1m,參考數(shù)據(jù): ≈2.24, ≈1.732, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)圖1的程序,得到了y與x的函數(shù)圖象,如圖2,若點M是y軸正半軸上任意一點,過點M作PQ∥x軸交圖象于點P,Q,連接OP,OQ,則下列結(jié)論:①x<0時,y= ;②△OPQ的面積為定值;③x>0時,y隨x的增大而增大;④MQ=2PM;⑤∠POQ可以等于90°.其中正確的有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙P與x軸交于A和B(9,0)兩點,與y軸的正半軸相切與點C(0,3),作⊙P的直徑BD,過點D作直線DE⊥BD,交x軸于E點,若點P在雙曲線y= 上,則直線DE的解析式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作⊙O,交BD于點E,連接CE,過D作DF⊥AB于點F,∠BCD=2∠ABD.
(1)求證:AB是⊙O的切線;
(2)若∠A=60°,DF= ,求⊙O的直徑BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明隨機調(diào)查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問題:
(1)這項被調(diào)查的總?cè)藬?shù)是多少人?
(2)試求表示A組的扇形統(tǒng)計圖的圓心角的度數(shù),補全條形統(tǒng)計圖;
(3)如果小明想從D組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.

查看答案和解析>>

同步練習冊答案