【題目】如圖,已知△ABC中,AB=AC=,BC=4.線段AB的垂直平分線DF分別交邊AB、AC、BC所在的直線于點D、E、F.

(1)求線段BF的長;

(2)求AE:EC的值.

【答案】(1);(2)5.

【解析】分析:1)作AHBCH,如圖利用等腰三角形的性質(zhì)得BH=CH=BC=2,再利用勾股定理計算出AH=4,然后證明RtFBDRtABH,再利用相似比計算BFDF的長

2)作CGABDFG,如圖,利用CGBD得到==然后由CGAD,根據(jù)平行線分線段成比例定理得到AEEC的值.

詳解:(1)作AHBCH,如圖,

AB=AC=,BH=CH=BC=2

RtABHAH==4

DF垂直平分AB,BD=BDF=90°.

∵∠ABH=FBD,RtFBDRtABH

==,==

BF=5,DF=2;

2)作CGABDFG,如圖,

BF=5,BC=4CF=1

CGBD,==

CGAD,===5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形是菱形,,反比例函數(shù)的圖象經(jīng)過點,若將菱形向下平移2個單位,點恰好落在反比例函數(shù)的圖象上,則反比例函數(shù)的表達(dá)式為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016湖南省益陽市)如圖①,在ABC中,∠ACB=90°,B=30°,AC=1,DAB的中點,EFACD的中位線,四邊形EFGHACD的內(nèi)接矩形(矩形的四個頂點均在ACD的邊上).

(1)計算矩形EFGH的面積;

(2)將矩形EFGH沿AB向右平移,F落在BC上時停止移動.在平移過程中,當(dāng)矩形與CBD重疊部分的面積為時,求矩形平移的距離;

(3)如圖③,將(2)中矩形平移停止時所得的矩形記為矩形E1F1G1H1,將矩形E1F1G1H1G1點按順時針方向旋轉(zhuǎn),當(dāng)H1落在CD上時停止轉(zhuǎn)動,旋轉(zhuǎn)后的矩形記為矩形E2F2G1H2,設(shè)旋轉(zhuǎn)角為α,求cosα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行全體學(xué)生“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個.隨機抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.

根據(jù)以上信息完成下列問題:

1統(tǒng)計表中的m= ,n= ,并補全條形統(tǒng)計圖;

2扇形統(tǒng)計圖中“C組”所對應(yīng)的圓心角的度數(shù)是 ;

3已知該校共有900名學(xué)生,如果聽寫正確的字的個數(shù)少于24個定為不合格,請你估計該校本次聽寫比賽不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用粗線在數(shù)軸上表示了一個“范圍”,這個“范圍”包含所有大于1且小于2的數(shù)(數(shù)軸上12這兩個數(shù)的點空心,表示這個范圍不包含數(shù)12).

請你在數(shù)軸上表示出一個范圍,使得這個范圍:

1)包含所有大于﹣3且小于0的數(shù)(畫在數(shù)軸(1)上);

2)包含﹣1.5、π這兩個數(shù),且只含有5個整數(shù)(畫在數(shù)軸(2)上);

3)同時滿足以下三個條件:(畫在數(shù)軸(3)上)

①至少有100對互為相反數(shù)和100對互為倒數(shù);

②有最小的正整數(shù);

③這個范圍內(nèi)最大的數(shù)與最小的數(shù)表示的點的距離大于3但小于4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某條道路上通行車輛限速60千米/時,道路的AB段為監(jiān)測區(qū),監(jiān)測點P到AB的距離PH為50米(如圖).已知點P在點A的北偏東45°方向上,且在點B的北偏西60°方向上,點B在點A的北偏東75°方向上,那么車輛通過AB段的時間在多少秒以內(nèi),可認(rèn)定為超速?(參考數(shù)據(jù):≈1.7,≈1.4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c的對稱軸為直線x=1,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),且AB=4,又P是拋物線上位于第一象限的點,直線APy軸交于點D,與對稱軸交于點E,設(shè)點P的橫坐標(biāo)為t.

(1)求點A的坐標(biāo)和拋物線的表達(dá)式;

(2)當(dāng)AE:EP=1:2時,求點E的坐標(biāo);

(3)記拋物線的頂點為M,與y軸的交點為C,當(dāng)四邊形CDEM是等腰梯形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中A0,a)、Bb,0),且滿足4a22+b420,點Pm,m)在線段AB

1)求A、B的坐標(biāo);

2)如圖1,若過PPCABx軸于C,交y軸交于點D,求的值;

3)如圖2,以AB為斜邊在AB下方作等腰直角△ABCCGOBG,設(shè)I是∠OAB的角平分線與OP的交點,IHABH.請?zhí)骄?/span>的值是否發(fā)生改變,若不改變請求其值;若改變請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC,PBC邊上任意一點,PF⊥ABF,PE⊥ACE,AC邊上的高BD=a.

(1)試說明PEPF=a;

(2)若點PBC的延長線上,其它條件不變,上述結(jié)論還成立嗎?如果成立請說明理由;如果不成立,請重新給出一個關(guān)于PE,PF,a的關(guān)系式,不需要說明理由.

查看答案和解析>>

同步練習(xí)冊答案