【題目】某條道路上通行車輛限速60千米/時(shí),道路的AB段為監(jiān)測(cè)區(qū),監(jiān)測(cè)點(diǎn)P到AB的距離PH為50米(如圖).已知點(diǎn)P在點(diǎn)A的北偏東45°方向上,且在點(diǎn)B的北偏西60°方向上,點(diǎn)B在點(diǎn)A的北偏東75°方向上,那么車輛通過(guò)AB段的時(shí)間在多少秒以內(nèi),可認(rèn)定為超速?(參考數(shù)據(jù):≈1.7,≈1.4).

【答案】車輛通過(guò)AB段的時(shí)間在8.1秒以內(nèi),可認(rèn)定為超速

【解析】分析:根據(jù)點(diǎn)到直線的距離的性質(zhì),構(gòu)造直角三角形,然后利用解直角三角形的應(yīng)用,解直角三角形即可.

詳解:如圖,由題意知∠CAB=75°,∠CAP=45°,∠PBD=60°,

∴∠PAH=∠CAB–∠CAP=30°,

∵∠PHA=∠PHB=90°,PH=50,∴AH===50,

∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,

則PH=BH=50,∴AB=AH+BH=50+50,

60千米/時(shí)=米/秒,時(shí)間t==3+3≈8.1(秒),

即車輛通過(guò)AB段的時(shí)間在8.1秒以內(nèi),可認(rèn)定為超速.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,點(diǎn)同時(shí)從點(diǎn)出發(fā),分別在,上運(yùn)動(dòng),若點(diǎn)的運(yùn)動(dòng)速度是每秒2個(gè)單位長(zhǎng)度,且是點(diǎn)運(yùn)動(dòng)速度的2倍,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),停止一切運(yùn)動(dòng).以為對(duì)稱軸作的對(duì)稱圖形.點(diǎn)恰好在上的時(shí)間為__秒.在整個(gè)運(yùn)動(dòng)過(guò)程中,與矩形重疊部分面積的最大值為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EF分別是正方形ABCD的邊CD,AD上的點(diǎn),且CE=DFAE,BF相交于點(diǎn)O,下列結(jié)論:①AE=BF;②AEBF;③AO=OE;④SAOB=S四邊形DEOF.其中正確的有( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過(guò)小明還有一個(gè)求助沒(méi)有用(使用求助可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果小明第一題不使用求助,那么小明答對(duì)第一道題的概率是  

(2)如果小明將求助留在第二題使用,請(qǐng)用樹(shù)狀圖或者列表來(lái)分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=AC=,BC=4.線段AB的垂直平分線DF分別交邊AB、AC、BC所在的直線于點(diǎn)D、E、F.

(1)求線段BF的長(zhǎng);

(2)求AE:EC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD中,∠BAD=BDC=90°,BD2=ADBC.

(1)求證:ADBC;

(2)過(guò)點(diǎn)AAECDBC于點(diǎn)E.請(qǐng)完善圖形并求證:CD2=BEBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線Lx軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)C0,4,線段OA上的動(dòng)點(diǎn)M(與OA不重合)從A點(diǎn)以每秒1個(gè)單位的速度沿x軸向左移動(dòng)。

1)求A、B兩點(diǎn)的坐標(biāo);

2)求△COM的面積SM的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;

3)當(dāng)t何值時(shí)△COM≌△AOB,并求此時(shí)M點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】材料閱讀;

小明偶然發(fā)現(xiàn)線段AB的端點(diǎn)A的坐標(biāo)為(12),端點(diǎn)B的坐標(biāo)為(34),則線段AB中點(diǎn)的坐標(biāo)為(2,3),通過(guò)進(jìn)一步的探究發(fā)現(xiàn)在平面直角坐標(biāo)系中,以任意兩點(diǎn)Px1,y1)、Qx2,y2)為端點(diǎn)的線段中點(diǎn)坐標(biāo)為(,).

知識(shí)運(yùn)用:

如圖,矩形ONEF的對(duì)角線相交于點(diǎn)M,ON、OF分別在x軸和y軸上,O為坐標(biāo)原點(diǎn),點(diǎn)E的坐標(biāo)為(4,3),則點(diǎn)M的坐標(biāo)為   

能力拓展:

在直角坐標(biāo)系中,有A(﹣1,2)、B3,4)、Cl,4)三點(diǎn),另有一點(diǎn)D與點(diǎn)AB、C構(gòu)成平行四邊形的頂點(diǎn),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,DEF,DEF=90°,D=30°,DF=16,B是斜邊DF上一動(dòng)點(diǎn),過(guò)BABDFB,交邊DE(或邊EF)于點(diǎn)A,設(shè)BD=x,ABD的面積為y,yx之間的函數(shù)圖象大致為( )

A. A B. B C. C D. D

查看答案和解析>>

同步練習(xí)冊(cè)答案