【題目】如圖,在直角坐標系中,四邊形OABC為菱形,OAx軸的正半軸上,∠AOC60°,過點C的反比例函數(shù) 的圖象與AB交于點D,則COD的面積為_____

【答案】

【解析】

易證S菱形ABCO2SCDO,再根據(jù)tanAOC的值即可求得菱形的邊長,即可求得點C的坐標,可得菱形的面積和結論.

解:作DFAO,CEAO

∵∠AOC60°,

tanAOC,

∴設OExCE,

x,

x±2,

OE2CE2,

由勾股定理得:OC4

S菱形OABCOACE4×2,

∵四邊形OABC為菱形,

ABCO,AOBC,

DFAO,

SADOSDFO,

同理SBCDSCDF,

S菱形ABCOSADOSDFOSBCDSCDF

S菱形ABCO2SDFOSCDF)=2SCDO8,

SCDO4

故答案為4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知點M0的坐標為(1,0),將線段OM0繞原點O逆時針方向旋轉45°,再將其延長到M1,使得M1M0⊥OM0,得到線段OM1;又將線段OM1繞原點O逆時針方向旋轉45°,再將其延長到M2,使得M2M1⊥OM1,得到線段OM2;如此下去,得到線段OM3OM4,OM5,根據(jù)以上規(guī)律,請直接寫出OM2014的長度為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,在矩形ABCD中,AB=4,AD=10,在BC邊上是否存在點P,使∠APD=90°,若存在,請用直尺和圓規(guī)作出點P并求出BP的長.(保留作圖痕跡)

(2)如圖②,在ABC中,∠ABC=60°,BC=12,ADBC邊上的高,E、F分別為ABAC的中點,當AD=6時,BC邊上是否存在一點Q,使∠EQF=90°,求此時BQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:

我們知道若一個矩形的周長固定,當相鄰兩邊相等,即為正方形時,面積是最大的,反過來,若一個矩形的面積固定,它的周長是否會有最值呢?

方法探究:

用兩條直角邊分別為、的四個全等的直角三角形,可以拼成一個正方形,

,可以拼成如圖1的正方形,從而得到,即;

,可以拼成如圖2的正方形,從而得到,即

于是我們可以得到結論:,為正數(shù),總有,且當時,代數(shù)式取得最小值為

另外,我們也可以通過代數(shù)式運算得到類似上面的結論.

,

,,

∴對于任意實數(shù),,總有

且當時,代數(shù)式取得最小值為

類比應用:

1)對于正數(shù),,試比較的大小關系,并說明理由.

2)填空:

時,________

代數(shù)式有最________值為________

問題解決:

3)若一個矩形的面積固定為,它的周長是否會有最值呢?若有,求出周長的最值,及此時矩形的長和寬;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內,邊BCx軸平行,AB兩點的縱坐標分別為4,2,反比例函數(shù)yx0)的圖象經(jīng)過AB兩點,若菱形ABCD的面積為2,則k的值為( 。

A. 2B. 3C. 4D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過AABx軸,截取AB=OA(BA右側),連接OB,交反比例函數(shù)y=的圖象于點P.

(1)求反比例函數(shù)y=的表達式;

(2)求點B的坐標;

(3)求OAP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長CD3cm.動點P從點AB發(fā),以cm/s的速度沿AC方向運動到點C停止. 動點Q同時從點A出發(fā),以1cm/s的速度沿折線AB→BC方向運動到點C停止.設△APQ的面積為y(cm2),運動時間為x(s),則下列圖象能反映yx之間關系的是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù))的圖象與直線交于點

1)求的值;

2)已知點在直線)上運動設點坐標為,過點作平行于軸的直線,交直線于點,過點作平行于軸的直線,交函數(shù))的圖象于點

①當時,判斷線段的數(shù)量關系,并說明理由;

②若,結合函數(shù)的圖象,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知:點A(﹣4,0),B 0,3)分別是x、y軸上的兩點.

1)用尺規(guī)作圖作出ABO的外接圓⊙P;(不寫作法,保留作圖痕跡)

2)求出⊙P向上平移幾個單位后與x軸相切.

查看答案和解析>>

同步練習冊答案