如圖,⊙O的半徑為5,弦AB的長為6,M是弦AB 上的動點(diǎn),則OM長的最小值為

A. 5??     B. 4? ?? C.3???? D. 2

 

【答案】

C.

【解析】

試題分析:過OOMABM,此時線段OM的長最短,連接OA,根據(jù)垂徑定理求出AM,根據(jù)勾股定理求出OM即可.

OOMABM,此時線段OM的長最短,連接OA

OMO,OMAB
AM=AB=×8=4,
RtAMO中,由勾股定理得:OM=,
故選C

考點(diǎn): 1.垂徑定理;2.勾股定理.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點(diǎn),則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點(diǎn)F是BC的中點(diǎn),那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標(biāo)原點(diǎn)重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為格點(diǎn),則⊙O上格點(diǎn)有
 
個,設(shè)L為經(jīng)過⊙O上任意兩個格點(diǎn)的直線,則直線L同時經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點(diǎn),且MP:PN=1:2.若PA=2,則MN的長為
6
2
6
2

查看答案和解析>>

同步練習(xí)冊答案