【題目】如圖,已知二次函數(shù)的圖象過點O0,0).A84),與x軸交于另一點B,且對稱軸是直線x3

1)求該二次函數(shù)的解析式;

2)若MOB上的一點,作MNABOAN,當ANM面積最大時,求M的坐標;

3Px軸上的點,過PPQx軸與拋物線交于Q.過AACx軸于C,當以O,P,Q為頂點的三角形與以OA,C為頂點的三角形相似時,求P點的坐標.

【答案】1;(2)當t3時,SAMN有最大值3,此時M點坐標為(3,0);(3P點坐標為(14,0)或(﹣2,0)或(4,0)或(8,0).

【解析】

1)先利用拋物線的對稱性確定B60),然后設(shè)交點式求拋物線解析式;

2)設(shè)Mt0),先其求出直線OA的解析式為直線AB的解析式為y=2x-12,直線MN的解析式為y=2x-2t,再通過解方程組N),接著利用三角形面積公式,利用SAMN=SAOM-SNOM得到然后根據(jù)二次函數(shù)的性質(zhì)解決問題;

3)設(shè)Q,根據(jù)相似三角形的判定方法,當時,△PQO∽△COA,則;當時,△PQO∽△CAO,則,然后分別解關(guān)于m的絕對值方程可得到對應(yīng)的P點坐標.

解:(1)∵拋物線過原點,對稱軸是直線x3,

B點坐標為(6,0),

設(shè)拋物線解析式為yaxx6),

A8,4)代入得a824,解得a,

∴拋物線解析式為yxx6),即yx2x;

2)設(shè)Mt0),

易得直線OA的解析式為yx

設(shè)直線AB的解析式為ykx+b,

B60),A84)代入得,解得,

∴直線AB的解析式為y2x12,

MNAB

∴設(shè)直線MN的解析式為y2x+n

Mt0)代入得2t+n0,解得n=﹣2t,

∴直線MN的解析式為y2x2t,

解方程組,則

SAMNSAOMSNOM

t3時,SAMN有最大值3,此時M點坐標為(30);

3)設(shè)

∵∠OPQ=∠ACO,

∴當時,△PQO∽△COA,即

PQ2PO,即,

解方程m10(舍去),m214,此時P點坐標為(14,0);

解方程m10(舍去),m2=﹣2,此時P點坐標為(﹣20);

∴當時,△PQO∽△CAO,即

PQPO,即,

解方程m10(舍去),m28,此時P點坐標為(80);

解方程m10(舍去),m24,此時P點坐標為(40);

綜上所述,P點坐標為(14,0)或(﹣2,0)或(4,0)或(80).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,創(chuàng)新小組要測量公園內(nèi)一棵樹的高度AB,其中一名小組成員站在距離樹10米的點E處,測得樹頂A的仰角為54°.已知測角儀的架高CE1.8米,則這顆樹的高度為_________米.(結(jié)果保留一位小數(shù).參考數(shù)據(jù):sin54°=0.8090cos54°=0.5878,tan54°=1.3764

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C、點D為⊙O上異于AB的兩點,連接CD,過點CCEDB,交DB的延長線于點E,連接AC、ADBC,若∠ABD=2BDC

1)求證:CE是⊙0的切線

2)求證:△ABCCBE

3)若⊙O的半徑為5tanBDC=,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一臺放置在水平桌面上的筆記本電腦,將其側(cè)面抽象成如圖2所示的幾何圖形.若顯示屏AO與鍵盤BO長均為24cm,點P為眼睛所在位置,DAO的中點,連接PD,且PDAO(此時點P為最佳視角),點COB的延長線上,PCBC,BC12cm.

1)當PA45cm時,求PC的長;

2)當∠AOC115°時,線段PC的長比(1)中線段PC的長是增大還是減?請通過計算說明.(結(jié)果精確到0.1cmsin65°≈0.91,cos65°≈0.42tan65°≈2.14,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接十二運,某校開設(shè)了A:籃球,B:毽球,C:跳繩,D:健美操四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校范圍內(nèi)隨機抽取若干名學生,進行問卷調(diào)查(每個被調(diào)查的同學必須選擇而且只能在4中體育活動中選擇一種).將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).

1)這次調(diào)查中,一共查了   名學生:

2)請補全兩幅統(tǒng)計圖:

3)若有3名最喜歡毽球運動的學生,1名最喜歡跳繩運動的學生組隊外出參加一次聯(lián)誼互活動,欲從中選出2人擔任組長(不分正副),求兩人均是最喜歡毽球運動的學生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)的圖像在第一象限內(nèi)交于點A,在求點A坐標時,小明由于看錯了k,解得A1 , 3);小華由于看錯了m,解得A1, ).

1)求這兩個函數(shù)的關(guān)系式及點A的坐標;

2)根據(jù)函數(shù)圖象回答:若,請直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線

(1)當m=3時,求拋物線的頂點坐標;

(2)已知點A(1,2).試說明拋物線總經(jīng)過點A

(3)已知點B(0,2),將點B向右平移3個單位長度,得到點C,若拋物線與線段BC只有一個公共點,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B、C、D是直徑為AB的⊙O上的四個點,CD=BC,ACBD交于點E。

(1)求證:DC2=CE·AC;

(2)若AE=2EC,求之值;

(3)在(2)的條件下,過點C作⊙O的切線,交AB的延長線于點H,若SACH,求EC之長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一副籃架由配重、支架、籃板與籃筐組成,在立柱的C點觀察籃板上沿D點的仰角為45°,在支架底端的A點觀察籃板上沿D點的仰角為54°,點C與籃板下沿點E在同一水平線,若AB=1.91米,籃板高度DE1.05米,求籃板下沿E點與地面的距離.(結(jié)果精確到01m,參考數(shù)據(jù):sin54°≈0.80, cos54°≈0.60tan54°1.33

查看答案和解析>>

同步練習冊答案