【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”.
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,∠A=40°,則∠ABX+∠ACX= °;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).
【答案】(1)∠BDC=∠A+∠B+∠C;(2)①50°;②85°;③63°.
【解析】
(1)延長BD交AC于F,根據(jù)外角的性質(zhì),即可判斷出∠BDC=∠BAC+∠B+∠C.
(2)①由(1)可得∠ABX+∠ACX+∠A=∠BXC,然后根據(jù)∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的值.
②由(1)可得∠DBE=∠DAE+∠ADB+∠AEB,再根據(jù)∠DAE=40°,∠DBE=130°,求出∠ADB+∠AEB的值;然后根據(jù)∠DCE(∠ADB+∠AEB)+∠DAE,即可求出∠DCE的度數(shù).
③根據(jù)∠BG1C(∠ABD+∠ACD)+∠A,∠BG1C=70°,設(shè)∠A為x°,可得∠ABD+∠ACD=133°﹣x°,解方程,求出x的值,即可判斷出∠A的度數(shù).
(1)如圖(1),延長BD交AC于F,根據(jù)外角的性質(zhì),可得:∠DFC=∠A+∠B.
∵∠BDC=∠DFC+∠C,∴∠BDC=∠A+∠B+∠C;
(2)①由(1),可得:∠ABX+∠ACX+∠A=∠BXC.
∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣40°=50°.
故答案為:50.
②由(1),可得:∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∴∠DCE(∠ADB+∠AEB)+∠DAE=45°+40°=85°;
③∠BG1C(∠ABD+∠ACD)+∠A.
∵∠BG1C=70°,∴設(shè)∠A為x°.
∵∠ABD+∠ACD=133°﹣x°
∴(133﹣x)+x=70,∴13.3x+x=70,解得:x=63,即∠A的度數(shù)為63°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B的坐標分別為(1,4)和(4,4),拋物線y=a(x+m)2+n的頂點在線段AB上,與x軸交于C,D兩點(C在D的左側(cè)),點C的橫坐標最小值為﹣3,則點D的橫坐標的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個小正方形的邊長為1,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標出了點B的對應(yīng)點B′,利用網(wǎng)格點畫圖和無刻度的直尺畫圖并解答(保留畫圖痕跡):
(1)畫出△A′B′C′;
(2)畫出△ABC的高,即線段BD;
(3)連接AA′、 CC′,那么AA′與CC′的關(guān)系是________;線段AC掃過圖形的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=a1(x﹣2)2+2與y=a2(x﹣2)2﹣3的頂點分別為A,B,與x軸分別交于點O,C,D,E.若點D的坐標為(﹣1,0),則△ADE與△BOC的面積比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P為△ABC的內(nèi)心,延長AP交△ABC的外接圓于D,在AC延長線上有一點E,滿足AD2=ABAE.
求證:DE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長方形放置在平面直角坐標系中,已知點,點,動點從出發(fā),沿以每秒個單位的速度運動,同時,動點從出發(fā),沿以每秒個單位的速度運動.當其中一點到達點時,兩動點同時停止運動設(shè)運動時間為.
(1)當______時,點追上點,此時點的坐標為_______.
(2)當時,分別取、的中點、,如果四邊形的面積等于,請求出時間的取值;
(3)如圖2,連接,已知,在(2)問的條件下,過點作于點,問在長方形的四條邊上是否存在點,使得線段,若存在,請直接寫出點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,P是CD上一點,且AP和BP分別平分∠DAB和∠CBA.
(1)求∠APB的度數(shù);
(2)如果AD=5 cm,AP=8 cm,求△APB的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等腰直角三角形,∠ABC=90°,AB=BC,點A在x軸的負半軸上,點B是y軸上的一個動點,點C在點B的上方,
(1)如圖1當點A的坐標為(﹣3,0),點B的坐標為(0,1)時,求點C的坐標;
(2)設(shè)點A的坐標為(a,0),點B的坐標為(0,b).過點C作CD⊥y軸于點D,在點B運動過程中(不包含△ABC的一邊與坐標軸重合的情況),猜想線段OD的長與a、b的數(shù)量關(guān)系,并說明理由;
(3)在(2)的條件下如圖4,當x軸平分∠BAC時,BC交x軸于點E,過點作CF⊥x軸于點F.說明此時線段CF與AE的數(shù)量關(guān)系(用含a、b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快遞公司準備購買機器人來代替人工分揀已知購買- 臺甲型機器人比購買-臺乙型機器人多萬元;購買臺甲型機器人和臺乙型機器人共需萬元.
(1)求甲、乙兩種型號的機器人每臺的價格各是多少萬元;
(2)已知甲型、乙型機器人每臺每小時分揀快遞分別是件、件,該公司計劃最多用萬元購買臺這兩種型號的機器人.該公司該如何購買,才能使得每小時的分揀量最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com