【題目】(1)等腰三角形底邊長(zhǎng)為6cm,一腰上的中線(xiàn)把它的周長(zhǎng)分成兩部分的差為2cm,則腰長(zhǎng)為________.
(2)已知的周長(zhǎng)為24,,于點(diǎn)D,若的周長(zhǎng)為20,則AD的長(zhǎng)為________.
(3)已知等腰三角形的周長(zhǎng)為24,腰長(zhǎng)為x,則x的取值范圍是________.
【答案】4cm或8cm 8
【解析】
(1)根據(jù)題意畫(huà)出圖形,由題意得 ,即可得 ,又由等腰三角形的底邊長(zhǎng)為6cm,即可求得答案.
(2)由△ABC的周長(zhǎng)為24得到AB,BC的關(guān)系,由△ABD的周長(zhǎng)為20得到AB,BD,AD的關(guān)系,再由等腰三角形的性質(zhì)知,BC為BD的2倍,故可解出AD的值.
(3)設(shè)底邊長(zhǎng)為y,再由三角形的三邊關(guān)系即可得出答案.
(1)如圖, ,BD是中線(xiàn)
由題意得存在兩種情況:①②
①,
∵
∴
②,
∵
∴
∴腰長(zhǎng)為:4cm或8cm
故答案為:4cm或8cm.
(2)∵△ABC的周長(zhǎng)為24,
∴
∵
∴
∴
∴
∵的周長(zhǎng)為20
∴
∴
故答案為:8.
(3)設(shè)底邊長(zhǎng)為y
∵等腰三角形的周長(zhǎng)為24,腰長(zhǎng)為x
∴
∴ ,即
解得
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于0?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)在上,連接,將沿直線(xiàn)翻折后,點(diǎn)恰好落在邊的點(diǎn)處若,,則點(diǎn)到的距離是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究
(1)如圖①,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線(xiàn)段BE、EF、FD之間的數(shù)量關(guān)系為 ;
(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個(gè)不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說(shuō)明理由;
問(wèn)題解決
(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點(diǎn)D,則對(duì)角線(xiàn)AC的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知,點(diǎn)P在OA上,且,點(diǎn)P關(guān)于直線(xiàn)OB的對(duì)稱(chēng)點(diǎn)是Q,則________.
(2)已知,點(diǎn)P在的內(nèi)部,,點(diǎn)和點(diǎn)P關(guān)于OA對(duì)稱(chēng),點(diǎn)和點(diǎn)P關(guān)于OB對(duì)稱(chēng),則、O、三點(diǎn)構(gòu)成的三角形是________三角形,其周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以線(xiàn)段AB兩端點(diǎn)A,B為圓心,以大于AB長(zhǎng)為半徑畫(huà)弧,兩弧交于C,D兩點(diǎn),作直線(xiàn)CD交AB于點(diǎn)M,DE∥AB,BE∥CD.
(1)判斷四邊形ACBD的形狀,并說(shuō)明理由;
(2)求證:ME=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答一個(gè)問(wèn)題后,將結(jié)論作為條件之一,提出與原問(wèn)題有關(guān)的新問(wèn)題,我們把它稱(chēng)為原問(wèn)題的一個(gè)“逆向”問(wèn)題.例如,原問(wèn)題是“若矩形的兩邊長(zhǎng)分別為3和4,求矩形的周長(zhǎng)”,求出周長(zhǎng)等于14后,它的一個(gè)“逆向”問(wèn)題可以是“若矩形的周長(zhǎng)為14,且一邊長(zhǎng)為3,求另一邊的長(zhǎng)”;也可以是“若矩形的周長(zhǎng)為14,求矩形面積的最大值”,等等.
(1)設(shè)A=,B=,求A與B的積;
(2)提出(1)的一個(gè)“逆向”問(wèn)題,并解答這個(gè)問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為、,點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC邊上運(yùn)動(dòng),當(dāng)是等腰三角形時(shí),點(diǎn)Р的坐標(biāo)為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=∠CDA=90°,AB=1,CD=2,過(guò)A,B,D三點(diǎn)的⊙O分別交BC,CD于點(diǎn)E,M,且CE=1,下列結(jié)論:①DM=CM;②;③⊙O的直徑為2;④AE=AD.其中正確的結(jié)論有_____(填序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com