【題目】如圖,分別以線段AB兩端點A,B為圓心,以大于AB長為半徑畫弧,兩弧交于C,D兩點,作直線CDAB于點M,DEAB,BECD.

(1)判斷四邊形ACBD的形狀,并說明理由;

(2)求證:ME=AD.

【答案】(1)四邊形ACBD是菱形;理由見解析;(2)證明見解析.

【解析】

(1)根據(jù)題意得出,即可得出結論;

(2)先證明四邊形是平行四邊形,再由菱形的性質得出,證明四邊形是矩形,得出對角線相等,即可得出結論.

(1)解:四邊形ACBD是菱形;理由如下:

根據(jù)題意得:AC=BC=BD=AD,

∴四邊形ACBD是菱形(四條邊相等的四邊形是菱形);

(2)證明:∵DE∥AB,BE∥CD,

∴四邊形BEDM是平行四邊形,

∵四邊形ACBD是菱形,

∴AB⊥CD,

∴∠BMD=90°,

∴四邊形ACBD是矩形,

∴ME=BD,

∵AD=BD,

∴ME=AD.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).

1)把△ABC向上平移5個單位后得到對應的△A1B1C1,畫出△A1B1C1,并寫出C1的坐標;

2)以原點O為對稱中心,再畫出與△A1B1C1關于原點O對稱的△A2B2C2,并寫出點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某學校在行讀石鼓閣研學活動中,參觀了我市中華石鼓園,石鼓閣是寶雞城市新地標.建筑面積7200平方米,為我國西北第一高閣.秦漢高臺門闕的建筑風格,追求穩(wěn)定之中的飛揚靈動,深厚之中的巧妙組合,使景觀功能和標志功能融為一體.小亮想知道石鼓閣的高是多少,他和同學李梅對石鼓閣進行測量.測量方案如下:如圖,李梅在小亮和石鼓閣之間的直線BM上平放一平面鏡,在鏡面上做了一個標記,這個標記在直線BM上的對應位置為點C,鏡子不動,李梅看著鏡面上的標記,她來回走動,走到點D時,看到石鼓閣頂端點A在鏡面中的像與鏡面上的標記重合,這時,測得李梅眼睛與地面的高度ED=1.6米,CD=2.2米,然后,在陽光下,小亮從D點沿DM方向走了29.4米,此時石鼓閣影子與小亮的影子頂端恰好重合,測得小亮身高1.7米,影長FH=3.4米.已知ABBM,EDBM,GFBM,其中,測量時所使用的平面鏡的厚度忽略不計,請你根據(jù)題中提供的相關信息,求出石鼓閣的高AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】充實而快樂的暑假生活即將結束,校學生會張同學采用隨機抽樣的方式對初三年級學生暑期生活進行了問卷調查,并將調查結果按照“A社會實踐類、B學習提高類、C游藝娛樂類、D其他進行了分類統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖.(接受調查的每名同學只能在四類中選擇其中一種類型,不可多選或不選)請根據(jù)圖中提供的信息完成以下問題:

(1)扇形統(tǒng)計圖中表示B類的扇形圓心角是   度,并補全條形統(tǒng)計圖;

(2)張同學已從被調查的同學中確定了4名同學進行開學后的經(jīng)驗交流,其中A社會實踐類1人,B學習提高類3人,并計劃在這四人中選出兩人的寶貴經(jīng)驗刊登在?希埨卯嫎錉顖D或列表的方法求出選出的恰好是A、B類各一人的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)等腰三角形底邊長為6cm,一腰上的中線把它的周長分成兩部分的差為2cm,則腰長為________

2)已知的周長為24,于點D,若的周長為20,則AD的長為________

3)已知等腰三角形的周長為24,腰長為x,則x的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,甲、乙兩名大學生騎自行車去距學校6000米的凈月潭公園.兩人同時從學校出發(fā),以a米/分的速度勻速行駛出發(fā)4.5分鐘時,甲同學發(fā)現(xiàn)忘記帶學生證,以1.5a米/分的速度按原路返回學校,取完學生證(在學校取學生證所用時間忽略不計),繼續(xù)以返回時的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車的速度始終不變.設甲、乙兩名大學生距學校的路程為s(米),乙同學行駛的時間為t(分),s與t之間的函數(shù)圖象如圖所示.

(1)求a、b的值.

(2)求甲追上乙時,距學校的路程.

(3)當兩人相距500米時,直接寫出t的值是_______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ΔABC中,AB=AC,A=40O,延長ACD,使CD=BC,點PΔABD的內(nèi)心,則∠BPC=

A. 105° B. 110° C. 130° D. 145°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,弦CD⊥AB于點E,且CD=24,點M⊙O上,MD經(jīng)過圓心O,聯(lián)結MB

1)若BE=8,求⊙O的半徑;

2)若∠DMB=∠D,求線段OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】十一期間,小明一家一起去旅游,如圖是小明設計的某旅游景點的圖紙(網(wǎng)格是由相同的小正方形組成的,且小正方形的邊長代表實際長度100m,在該圖紙上可看到兩個標志性景點A,B.若建立適當?shù)钠矫嬷苯亲鴺讼,則點A(﹣3,1),B(﹣3,﹣3),第三個景點C(1,3)的位置已破損.

(1)請在圖中畫出平面直角坐標系,并標出景點C的位置;

(2)平面直角坐標系的坐標原點為點O,ACO是直角三角形嗎?請判斷并說明理由.

查看答案和解析>>

同步練習冊答案