【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,AEBF交于點P,連接EF,PD

1)求證:四邊形ABEF是菱形;

2)若AB=4,AD=6,∠ABC=60°,求PD

【答案】1)證明見解析;(2

【解析】

1)由四邊形ABCD是平行四邊形,得到ADBC,從而得到∠AFB=∠FBE,再由∠ABF=∠FBE,推出∠ABF=∠AFB,于是得到ABAF,同理得出ABBE,于是得出結(jié)論;

2)由菱形的性質(zhì)得出AEBF,得到∠ABF30°,∠BAP=∠FAP60°從而得出AP2,過點PPMADM,得到PMAM1,DM5,然后利用勾股定理求PD即可.

1)∵四邊形ABCD是平行四邊形,∴ADBC,∴∠AFB=FBE

∵∠ABF=FBE,∴∠ABF=AFB,∴AB=AF,同理AB=BE,∴四邊形ABEF是菱形;

2)∵四邊形ABEF是菱形,∴AEBF

∵∠ABC=60°,∴∠ABF=30°,∠BAP=FAP=60°

AB=4,∴AP=2,如圖,過點PPMADM,∴PM=AM=1

AD=6,∴DM=5,∴PD=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,說法正確的個數(shù)是(

1)兩個等邊三角形一定相似;(2)有一個角相等的兩個菱形一定相似;

3)兩個等腰三角形腰上的高和腰對應成比例,則這兩個三角形必相似;

4)兩邊及第三邊上的中線對應成比例的兩三角形相似.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結(jié)論中正確的是

(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,AE=;(5)OGBD=AE2+CF2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,△ACD內(nèi)接于⊙O,延長ABCD相交于點E,若∠CAD35°,∠CDA40°,則∠E的度數(shù)是( 。

A.20°B.25°C.30°D.35°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于反比例函數(shù),下列說法不正確的是( 。

A. 函數(shù)圖象分別位于第一、第三象限

B. x0時,yx的增大而減小

C. 若點Ax1,y1),Bx2y2)都在函數(shù)圖象上,且x1x2,則y1y2

D. 函數(shù)圖象經(jīng)過點(12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD的頂點Ax軸負半軸上,頂點Bx軸正半軸上.若拋物線p=ax2-10ax+8a0)經(jīng)過點CD,則點B的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在銳角△ABC中,AB=5tanC=3,BDAC于點D,BD=3,點P從點A出發(fā),以每秒1個單位長度的速度沿AB向終點B運動,過點PPEAC交邊BC于點E,以PE為邊作RtPEF,使∠EPF=90°,點F在點P的下方,且EFAB.設△PEF與△ABD重疊部分圖形的面積為S(平方單位)(S0),點P的運動時間為t(秒)(t0).

1)直接寫出線段AC的長為

2)當△PEF與△ABD重疊部分圖形為四邊形時,求St之間的函數(shù)關系式,并寫出t的取值范圍.

3)若邊EF所在直線與邊AC交于點Q,連結(jié)PQ,如圖2

①當PQ將△PEF的面積分成1:2兩部分時,求AP的長.

②直接寫出△ABC的某一頂點到P、Q兩點距離相等時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:如圖,將繞點逆時針旋轉(zhuǎn)60°得到,交于點,可推出結(jié)論:

問題解決:如圖,在中,,,.點內(nèi)一點,則點三個頂點的距離和的最小值是___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸正半軸相交,其頂點坐標為,下列結(jié)論:;②;③;④方程有兩個相等的實數(shù)根,其中正確的結(jié)論是________.(只填序號即可).

查看答案和解析>>

同步練習冊答案