【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.
(1)求證:直線CE是⊙O的切線.
(2)若BC=3,CD=3,求弦AD的長.
【答案】(1)證明見解析;(2)AD=.
【解析】試題分析:(1)連結OC,如圖,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,則∠3=∠2,于是可判斷OD∥AE,根據平行線的性質得OD⊥CE,然后根據切線的判定定理得到結論;
(2)由△CDB∽△CAD,可得,推出CD2=CBCA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,設BD=K,AD=2K,在Rt△ADB中,可得2k2+4k2=5,求出k即可解決問題.
試題解析:(1)證明:連結OC,如圖,
∵AD平分∠EAC,
∴∠1=∠3,
∵OA=OD,
∴∠1=∠2,
∴∠3=∠2,
∴OD∥AE,
∵AE⊥DC,
∴OD⊥CE,
∴CE是⊙O的切線;
(2)∵∠CDO=∠ADB=90°,
∴∠2=∠CDB=∠1,∵∠C=∠C,
∴△CDB∽△CAD,
∴,
∴CD2=CBCA,
∴(3)2=3CA,
∴CA=6,
∴AB=CA﹣BC=3,,設BD=K,AD=2K,
在Rt△ADB中,2k2+4k2=5,
∴k=,
∴AD=.
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連接AO并延長交⊙O于點E,連接EB.若AB=8,CD=2.
(1) 求⊙O半徑OA的長;
(2) 求EB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】蚌埠云軌測試線自開工以來備受關注,據了解我市首期工程云軌線路約12千米,若該任務由甲、乙兩工程隊先后接力完成,甲工程隊每天修建千米,乙工程隊每天修建千米,兩工程隊共需修建500天,求甲、乙兩工程隊分別修建云軌多少千米?
根據題意,小剛同學列出了一個尚不完整的方程組:
(1)根據小剛同學所列的方程組,請你分別指出未知數表示的意義.表示____________;表示________________.
(2)小紅同學“設甲工程隊修建云軌千米,乙工程隊修建云軌千米”請你利用小紅同學設的未知數解決問題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某產品的生產流水線每小時生產100件產品,生產前沒有產品積壓,生產3h后安排工人裝箱,若每小時裝產品150件,未裝箱的產品數量y是時間t的函數,那么,這個函數的大致圖象只能是下圖中的( )
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC內接于⊙O,過點A作直線EF.
(1)如圖①所示,若AB為⊙O的直徑,要使EF成為⊙O的切線,還需要添加的一個條件是(至少說出兩種): 或者 .
(2)如圖②所示,如果AB是不過圓心O的弦,且∠CAE=∠B,那么EF是⊙O的切線嗎?試證明你的判斷.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(a),(b),(c)所示,點E、D分別是正、正四邊形ABCM,正五邊形ABCMN鐘以C點為頂點的相鄰兩邊上的點,且,DB交AE于點P.
(1)在圖(a)中,求的度數.
(2)在圖(b)中,的度數為________,圖(c)中,的度數為________.
(3)根據前面探索,你能否將本題推廣到一般的正n邊形情況.若能,寫出推廣問題和結論;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,∠ABC=2∠C,以B為圓心任意長為半徑作弧,交BA、BC于點E. F,分別以E. F為圓心,以大于EF的長為半徑作弧,兩弧交于點P,作射線BP交AC于點,則下列說法不正確的是( )
A.∠ADB=∠ABCB.AB=BDC.AC=AD+BDD.∠ABD=∠BCD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,公交車行駛在筆直的公路上,這條路上有,,,四個站點,每相鄰兩站之間的距離為5千米,從站開往站的車稱為上行車,從站開往站的車稱為下行車.第一班上行車、下行車分別從站、站同時發(fā)車,相向而行,且以后上行車、下行車每隔10分鐘分別在,站同時發(fā)一班車,乘客只能到站點上、下車(上、下車的時間忽略不計),上行車、下行車的速度均為30千米/小時.
(1)問第一班上行車到站、第一班下行車到站分別用時多少?
(2)若第一班上行車行駛時間為小時,第一班上行車與第一班下行車之間的距離為千米,求與的函數關系式.
(3)一乘客前往站辦事,他在,兩站間的處(不含,站),剛好遇到上行車,千米,此時,接到通知,必須在35分鐘內趕到,他可選擇走到站或走到站乘下行車前往站.若乘客的步行速度是5千米/小時,求滿足的條件.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com