【題目】如圖,在矩形ABCD中,E是邊AD上一點(diǎn)(不與點(diǎn)A重合),連結(jié)BEPQ垂直平分BE,分別交AD、BE、BC于點(diǎn)P、O、Q,連結(jié)BP、EQ.求證:四邊形BPEQ是菱形.

【答案】詳見解析

【解析】

先根據(jù)線段垂直平分線的性質(zhì)證明PB=PE,由ASA證明△BOQ≌△EOP,得出PE=QB,證出四邊形BPEQ是平行四邊形,再根據(jù)菱形的判定即可得出結(jié)論;

證明:∵PQ垂直平分BE,

PBPE,OBOE,

∵四邊形ABCD是矩形,

ADBC,

∴∠PEO=∠QBO

在△BOQ與△EOP中,

,

∴△BOQ≌△EOPASA),

PEQB,

又∵ADBC

∴四邊形BPEQ是平行四邊形,

又∵QBQE,

∴四邊形BPEQ是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),將直線沿y軸向上平移3個(gè)單位長(zhǎng)度后恰好經(jīng)過B、C兩點(diǎn).

1)求直線BC及拋物線的解析式;

2)設(shè)拋物線的頂點(diǎn)為D,點(diǎn)P在拋物線的對(duì)稱軸上,且,求點(diǎn)P的坐標(biāo);

3)連結(jié)CD,求∠OCA與∠OCD兩角和的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進(jìn)生態(tài)文明建設(shè),甲、乙兩工程隊(duì)同時(shí)為嶗山區(qū)的兩條綠化帶鋪設(shè)草坪.兩隊(duì)所鋪設(shè)草坪的面積(米)與施工時(shí)間(時(shí))之間關(guān)系的近似可以用此圖象描述.請(qǐng)結(jié)合圖象解答下列問題:

(1)從工作2小時(shí)開始,施工方從乙隊(duì)抽調(diào)兩人對(duì)草坪進(jìn)行灌溉,乙隊(duì)速度有所降低,求乙隊(duì)在工作2小時(shí)后的函數(shù)關(guān)系式;

(2)求乙隊(duì)降速后,何時(shí)鋪設(shè)草坪面積為甲隊(duì)的?

(3)乙隊(duì)降速后,甲乙兩隊(duì)鋪設(shè)草坪速度之比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線()與拋物線()交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)是,點(diǎn)B的橫坐標(biāo)是3,則以下結(jié)論:①拋物線()的圖象的頂點(diǎn)一定是原點(diǎn);②x0時(shí),直與拋物線()的函數(shù)值都隨著x的增大而增大;③AB的長(zhǎng)度可以等于5;④△OAB有可能成為等邊三角形;⑤當(dāng)時(shí),,其中正確的結(jié)論是(

A.①②B.①②⑤C.②③④D.①②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個(gè)直角三角形紙片ACB,其中∠ACB90°,AC4BC3,EF分別是AC、AB邊上的點(diǎn),連接EF

1)如圖①,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF3SEDF,AE的長(zhǎng)為

2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MFCA

①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;

②求EF的長(zhǎng);

3)如圖③,若FE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)N,CN1,CE,則=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)的圖象與軸分別交于點(diǎn)、,且過點(diǎn).

1)求二次函數(shù)表達(dá)式;

2)若點(diǎn)為拋物線上第一象限內(nèi)的點(diǎn),且,求點(diǎn)的坐標(biāo);

3)在拋物線上(下方)是否存在點(diǎn),使?若存在,求出點(diǎn)軸的距離;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B是反比例函數(shù)y在第一象限內(nèi)的圖象上的兩點(diǎn),且A、B兩點(diǎn)的橫坐標(biāo)分別是48,則OAB的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市東坡實(shí)驗(yàn)中學(xué)準(zhǔn)備開展陽光體育活動(dòng),決定開設(shè)足球、籃球、乒乓球、羽毛球、排球等球類活動(dòng),為了了解學(xué)生對(duì)這五項(xiàng)活動(dòng)的喜愛情況,隨機(jī)調(diào)查了名學(xué)生(每名學(xué)生必選且只能選擇這五項(xiàng)活動(dòng)中的一種).

根據(jù)以上統(tǒng)計(jì)圖提供的信息,請(qǐng)解答下列問題:

1 ,

2)補(bǔ)全上圖中的條形統(tǒng)計(jì)圖.

3)若全校共有名學(xué)生,請(qǐng)求出該校約有多少名學(xué)生喜愛打乒乓球.

4)在抽查的名學(xué)生中,有小薇、小燕、小紅、小梅等名學(xué)生喜歡羽毛球活動(dòng),學(xué)校打算從小薇、小燕、小紅、小梅這名女生中,選取名參加全市中學(xué)生女子羽毛球比賽,請(qǐng)用列表法或畫樹狀圖法,求同時(shí)選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母、、代表)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,函數(shù)值y隨自變量x增大而減小的是(  )

A.y2xB.

C.D.y=﹣x2+2x1x>1

查看答案和解析>>

同步練習(xí)冊(cè)答案