【題目】如圖,在直角坐標(biāo)系中,拋物線y=﹣(x+1)2+4與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C.
(1)寫出拋物線頂點(diǎn)D的坐標(biāo) ;
(2)點(diǎn)D1是點(diǎn)D關(guān)于y軸的對稱點(diǎn),判斷點(diǎn)D1是否在直線AC上,并說明理由;
(3)若點(diǎn)E是拋物線上的點(diǎn),且在直線AC的上方,過點(diǎn)E作EF⊥x軸交線段AC于點(diǎn)F,求線段EF的最大值.
【答案】(1) (﹣1,4);(2)見解析;(3) 2.25.
【解析】
(1)根據(jù)二次函數(shù)的解析式直接寫出即可;
(2)先根據(jù)二次函數(shù)求出A、C的坐標(biāo),再用待定系數(shù)法確定直線AC的關(guān)系式,再求出
點(diǎn)D1,把它代入直線判斷是否再直線上;
(3)設(shè)點(diǎn)E(x,﹣x2﹣2x+3),F(x,x+3),則EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25, 則可知x=-1.5時,EF的最大值2.25.
解:(1)∵y=﹣(x+1)2+4,
∴拋物線頂點(diǎn)D的坐標(biāo)是(﹣1,4).
故答案為(﹣1,4);
(2)點(diǎn)D1在直線AC上,理由如下:
∵拋物線y=﹣(x+1)2+4與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,
∴當(dāng)y=0時,﹣(x+1)2+4=0,解得x=1或﹣3,A(﹣3,0),B(1,0),
當(dāng)x=0時,y=﹣1+4=3,C(0,3).
設(shè)直線AC的解析式為y=kx+b,
由題意得,解得,
∴直線AC的解析式為y=x+3.
∵點(diǎn)D1是點(diǎn)D關(guān)于y軸的對稱點(diǎn),D(﹣1,4).
∴D1(1,4),
∵x=1時,y=1+3=4,
∴點(diǎn)D1在直線AC上;
(3)設(shè)點(diǎn)E(x,﹣x2﹣2x+3),則F(x,x+3),
∵EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25,
∴線段EF的最大值是2.25.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.
(1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:是的內(nèi)接三角形,是延長線上的一點(diǎn),連接,且.
(1)判斷直線與的位置關(guān)系,并說明理由;
(2)若,,求弦的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有四個小球,球面上分別標(biāo)有數(shù)字﹣2、0、1、2,它們除數(shù)字不同外沒有任何區(qū)別,每次實(shí)驗(yàn)先攪拌均勻.
(1)從中任取一球,求抽取的數(shù)字為負(fù)數(shù)的概率;
(2)從中任取一球,將球上的數(shù)字記為x(不放回);再任取一球,將球上的數(shù)字記為y,試用畫樹狀圖(或列表法)表示所有可能出現(xiàn)的結(jié)果,并求“x+y>0”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù) y=ax+bx+c(a≠0)的圖象如圖所示,A(﹣ 1,3)是拋物線的頂點(diǎn),則以下結(jié)論中正確的是( )
A. a<0,b>0,c>0
B. 2a+b=0
C. 當(dāng) x<0 時,y 隨 x 的增大而減小
D. ax2+bx+c﹣3≤0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ.過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為預(yù)防疾病,某校對教室進(jìn)行“藥熏消毒”.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量(mg)與燃燒時間(分鐘)成正比例;燃燒后, 與成反比例(如圖所示).現(xiàn)測得藥物10分鐘燃完,此時教室內(nèi)每立方米空氣含藥量為8mg.據(jù)以上信息解答下列問題:
(1)求藥物燃燒時與的函數(shù)關(guān)系式.(2)求藥物燃燒后與的函數(shù)關(guān)系式.
(3)當(dāng)每立方米空氣中含藥量低于1.6mg時,對人體方能無毒害作用,那么從消毒開始,經(jīng)多長時間學(xué)生才可以回教室?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c,當(dāng)x=3時,y有最小值﹣4,且圖象經(jīng)過點(diǎn)(﹣1,12).
(1)求此二次函數(shù)的解析式;
(2)該拋物線交x軸于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,在拋物線對稱軸上有一動點(diǎn)P,求PA+PC的最小值,并求當(dāng)PA+PC取最小值時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn),使點(diǎn)B的對應(yīng)點(diǎn)B落在DA的延長線上,若AB=2,BC=4,則點(diǎn)C與其對應(yīng)點(diǎn)C的距離為( )
A. 6 B. 8 C. 2 D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com