【題目】如圖,正方形ABCD,點(diǎn)P為射線(xiàn)DC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q為AB的中點(diǎn),連接PQ,DQ,過(guò)點(diǎn)P作PE⊥DQ于點(diǎn)E.
(1)請(qǐng)找出圖中一對(duì)相似三角形,并證明;
(2)若AB=4,以點(diǎn)P,E,Q為頂點(diǎn)的三角形與△ADQ相似,試求出DP的長(zhǎng).
【答案】(1)△DPE∽△QDA,證明見(jiàn)解析;(2)DP=2或5
【解析】
(1)由∠ADC=∠DEP=∠A=90可證明△ADQ∽△EPD;
(2)若以點(diǎn)P,E,Q為頂點(diǎn)的三角形與△ADQ相似,有兩種情況,當(dāng)△ADQ∽△EPQ時(shí),設(shè)EQ=x,則EP=2x,則DE=2x,由△ADQ∽△EPD可得,可求出x的值,則DP可求出;同理當(dāng)△ADQ∽△EQP時(shí),設(shè)EQ=2a,則EP=a,可得,可求出a的值,則DP可求.
(1)△ADQ∽△EPD,證明如下:
∵PE⊥DQ,
∴∠DEP=∠A=90,
∵∠ADC=90,
∴∠ADQ+∠EDP=90,∠EDP+∠DPE=90,
∴∠ADQ=∠DPE,
∴△ADQ∽△EPD;
(2)∵AB=4,點(diǎn)Q為AB的中點(diǎn),
∴AQ=BQ=2,
∴DQ=,
∵∠PEQ=∠A=90,
∴若以點(diǎn)P,E,Q為頂點(diǎn)的三角形與△ADQ相似,有兩種情況,
①當(dāng)△ADQ∽△EPQ時(shí),,
設(shè)EQ=x,則EP=2x,則DE=2x,
由(1)知△ADQ∽△EPD,
∴,
∴,
∴x=
∴DP==5;
②當(dāng)△ADQ∽△EQP時(shí),設(shè)EQ=2a,則EP=a,
同理可得,
∴a=,
DP=.
綜合以上可得DP長(zhǎng)為2或5,使得以點(diǎn)P,E,Q為頂點(diǎn)的三角形與△ADQ相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰中,,與的平分線(xiàn)交于點(diǎn),過(guò)點(diǎn)做,分別交、于點(diǎn)、,若的周長(zhǎng)為18,則的長(zhǎng)是( )
A.8B.9C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 某校為了了解學(xué)生的安全意識(shí),在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查.根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖,如圖所示:
根據(jù)以上信息,解答下列問(wèn)題:
(1)這次調(diào)查一共抽取了______名學(xué)生,將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中,“較強(qiáng)”層次所占圓心角的大小為_(kāi)_____°;
(3)若該校有3200名學(xué)生,現(xiàn)要對(duì)安全意識(shí)為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)全校需要強(qiáng)化安全教育的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)分別與軸、軸交于點(diǎn),點(diǎn)是反比例函數(shù)的圖象上位于直線(xiàn)下方的點(diǎn),過(guò)點(diǎn)分別作軸、軸的垂線(xiàn),垂足分別為點(diǎn),交直線(xiàn)于點(diǎn),若,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn) 與x軸交于點(diǎn)A(-1,0),點(diǎn)B(3,0),與y軸正半軸交于點(diǎn)C.
(1)拋物線(xiàn)的解析式為________;
(2)P為拋物線(xiàn)上一點(diǎn),連結(jié)AC,PC,若∠PCO=3∠ACO,點(diǎn)P的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù))
(1)該函數(shù)的圖像與軸公共點(diǎn)的個(gè)數(shù)是( )
A.0 B.1 C.2 D.1或2
(2)求證:不論為何值,該函數(shù)的圖像的頂點(diǎn)都在函數(shù)的圖像上.
(3)當(dāng)時(shí),求該函數(shù)的圖像的頂點(diǎn)縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=﹣kx+k與反比例函數(shù)y=﹣(k≠0)在同一坐標(biāo)系中的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;
(3)直接寫(xiě)出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,0),以O(shè)A為邊在第四象限內(nèi)作等邊△AOB,點(diǎn)C為x軸的正半軸上一動(dòng)點(diǎn)(OC>1),連接BC,以BC為邊在第四象限內(nèi)作等邊△CBD,直線(xiàn)DA交y軸于點(diǎn)E.
(1)試問(wèn)△OBC與△ABD全等嗎?并證明你的結(jié)論;
(2)隨著點(diǎn)C位置的變化,點(diǎn)E的位置是否會(huì)發(fā)生變化?若沒(méi)有變化,求出點(diǎn)E的坐標(biāo);若有變化,請(qǐng)說(shuō)明理由;
(3)如圖2,以O(shè)C為直徑作圓,與直線(xiàn)DE分別交于點(diǎn)F、G,設(shè)AC=m,AF=n,用含n的代數(shù)式表示m
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com