【題目】如圖示,正方形ABCD的頂點A在等腰直角三角形DEF的斜邊EF上,EFBD相交于點H,連接CF.

求證:△DAE≌△DCF.

求證:AH2=AE2+HF2

【答案】詳見解析;詳見解析

【解析】

由正方形ABCD與等腰直角三角形DEF,得到兩對邊相等,一對直角相等,利用SAS即可得證;

連接CH,求證ADH≌△CDHADE≌△CDF,再根據(jù)題目條件得出為直角三角形,即可求解.

證明:①∵正方形ABCD,等腰直角三角形EDF,

∴∠ADC=∠EDF=90°,AD=CD,DE=DF,

∴∠ADE+∠ADF=∠ADF+∠CDF,

∴∠ADE=∠CDF,

△ADE△CDF中,

,

∴△ADE≌△CDF(SAS);

連接CH,

∵DA=DC,∠ADH=∠CDH=45°,DH=DH,

∴△ADH≌△CDH(SAS),

∴AH=CH,

∵△ADE≌△CDF(SAS),

∴∠E=∠DFC=45°,

∵∠DFE=45°,

∴∠HFC=90°,

∴CH2=FH2+CF2,

∴AH2=FH2+CF2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,O是矩形ABCD的對角線AC的中點,E是線段AD上的一點,作OFOE于點O,交直線CD于點F,連結(jié)EF,若EF2CF2,則AE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,垂直的角平分線于,的中點,則圖中兩個陰影部分面積之差的最大值為( )

A.1.5B.3C.4.5D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點A、D為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點M、N;第二步,連結(jié)MN,分別交ABAC于點E、F;第三步,連結(jié)DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

為宣傳社會主義核心價值觀,某社區(qū)居委會計劃制作1200個大小相同的宣傳欄.現(xiàn)有甲、乙兩個廣告公司都具備制作能力,居委會派出相關(guān)人員分別到這兩個廣告公司了解情況,獲得如下信息:

信息一:甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天;

信息二:乙公司每天制作的數(shù)量是甲公司每天制作數(shù)量的1.2倍.

根據(jù)以上信息,求甲、乙兩個廣告公司每天分別能制作多少個宣傳欄?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,AB=AC,點DBC的中點,點EAD上.

1)求證:BE=CE

2)如圖2,若BE的延長線交AC于點F,且BFAC,∠BAC=45°,原題設(shè)其他條件不變.求證:AB=BF+EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有0、10、2030的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應(yīng)價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.

1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC三個頂點坐標分別是A13),B4,1),C44).

1)請按要求畫圖:畫出△ABC向左平移5個單位長度后得到的△A1B1C1;

畫出△ABC繞著原點O順時針旋轉(zhuǎn)90°后得到的△A2B2C2

2)請寫出直線B1C1與直線B2C2的交點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是⊙O內(nèi)接三角形,∠ACB=45°,∠AOC=150°,過點C作⊙O切線交AB延長線于點D.

(1)求證:CD=CB;(2)如果⊙O的半徑為,求AC的長.

查看答案和解析>>

同步練習(xí)冊答案