【題目】如圖,E,F,M分別是正方形ABCD三邊的中點(diǎn),CEDF交于N,連接AM,AN,MN對于下列四個(gè)結(jié)論:①AM∥CE②DF⊥CE;③AN=BC;④∠AND=∠CMN 其中錯(cuò)誤的是(

A.B.C.D.

【答案】D

【解析】

證四邊形AECM為平行四邊形得①正確,證(SAS)易得②正確,證AM垂直平分DN得到③正確,而推導(dǎo)不出∠AND=∠CMN,故④錯(cuò)誤

:∵正方形ABCD,M,E分別為DCAB的中點(diǎn),∴CMAE,CM=AE,∴四邊形AECM為平行四邊形,∴AM//CE,①正確;∵CD=BC,DCB=CBE=90°CF=BE,∴(SAS),∴∠1=2,∵∠2+3=90°,∴∠1+3=90°,∴DF⊥CE,∴②正確;∵Rt,M為斜邊DC的中點(diǎn),∴DM=CM=MN,∵AM//CE,DF⊥CE,∴AMDF,∴AM垂直平分DN,∴AD=AN=BC,∴③正確,∴∠AND=ADN,∵∠1+AND=90°,∠1+3=90°,∴∠AND=3=MNC≠CMN,故④錯(cuò)誤.故答案為D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分)如圖,管中放置著三根同樣的繩子,

)小明從這三根繩子中隨機(jī)選一根,恰好選中繩子的概率是__________

)小明先從左端, , 三個(gè)繩頭中隨機(jī)選兩個(gè)打一個(gè)結(jié),再從右端, 三個(gè)繩頭中隨機(jī)選兩個(gè)打一個(gè)結(jié),求這三根繩子能連結(jié)成一根長繩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高市民的環(huán)保意識,倡導(dǎo)節(jié)能減排,綠色出行,某市計(jì)劃在城區(qū)投放一批共享單車這批單車分為A,B兩種不同款型,其中A型車單價(jià)400元,B型車單價(jià)320元.

(1)今年年初,共享單車試點(diǎn)投放在某市中心城區(qū)正式啟動.投放A,B兩種款型的單車共100輛,總價(jià)值36800元.試問本次試點(diǎn)投放的A型車與B型車各多少輛?

(2)試點(diǎn)投放活動得到了廣大市民的認(rèn)可,該市決定將此項(xiàng)公益活動在整個(gè)城區(qū)全面鋪開.按照試點(diǎn)投放中A,B兩車型的數(shù)量比進(jìn)行投放,且投資總價(jià)值不低于184萬元.請問城區(qū)10萬人口平均每100人至少享有A型車與B型車各多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B在O的直徑AC的延長線上,點(diǎn)D在O上,AD=DB,∠B=30°,O的半徑為4.

(1)求證:BD是O的切線;

(2)求CB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E,B.

(1)求二次函數(shù)y=ax2+bx+c的解析式;

(2)過點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形中,在對角線上取不同的兩點(diǎn)(點(diǎn)B、EF、D依次排列),下列條件中,能得出四邊形一定為平行四邊形的是_____________.(A. BE=DF;B. AE=CF C. AECF;D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有2個(gè)完全相同的小球,分別標(biāo)有數(shù)字0和-2;乙袋中有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字-2,01,小明從甲袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y)

1寫出點(diǎn)Q所有可能的坐標(biāo);

2求點(diǎn)Qx軸上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,AB4AC3,點(diǎn)DE分別是AB,AC的中點(diǎn),點(diǎn)G,FBC邊上(均不與端點(diǎn)重合),DGEF.將△BDG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)180°,將△CEF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)180°,拼成四邊形MGFN,則四邊形MGFN周長l的取值范圍是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOBCOD均為等腰直角三角形,AOBCOD90°,點(diǎn)C、D分別在邊OAOB上的點(diǎn).連接AD,BC,點(diǎn)HBC中點(diǎn),連接OH

1)如圖1,求證:OHAD,OHAD

2)將COD繞點(diǎn)O旋轉(zhuǎn)到圖2所示位置時(shí),⑴中結(jié)論是否仍成立?若成立,證明你的結(jié)論;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案