【題目】如圖,已知正方形ABCD的邊長為4,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E在DC邊的延長線上。若∠CAE=15°,則AE=___.
【答案】8;
【解析】
先由正方形的性質(zhì)可得∠BAC=45°,AB∥DC,∠ADC=90°,由∠CAE=15°,根據(jù)平行線的性質(zhì)及角的和差得出∠E=∠BAE=∠BAC-∠CAE=30°.然后在Rt△ADE中,根據(jù)30°角所對(duì)的直角邊等于斜邊的一半即可得到AE=2AD=8.
∵正方形ABCD的邊長為4,對(duì)角線AC與BD相交于點(diǎn)O,
∴∠BAC=45°,AB∥DC,∠ADC=90°,
∵∠CAE=15°,
∴∠E=∠BAE=∠BAC∠CAE=45°15°=30°.
∵在Rt△ADE中,∠ADE=90°,∠E=30°,
∴AE=2AD=8.
故答案為8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某區(qū)初二年級(jí)數(shù)學(xué)學(xué)科期末質(zhì)量監(jiān)控情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)將有關(guān)問題補(bǔ)充完整.
收集數(shù)據(jù):隨機(jī)抽取甲乙兩所學(xué)校的20名學(xué)生的數(shù)學(xué)成績進(jìn)行分析:
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)
分段 學(xué)校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
|
|
|
|
|
|
|
分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
統(tǒng)計(jì)量 學(xué)校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | m | 115.25 |
經(jīng)統(tǒng)計(jì),表格中m的值是 .
得出結(jié)論:
a若甲學(xué)校有400名初二學(xué)生,估計(jì)這次考試成績80分以上人數(shù)為 .
b可以推斷出 學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為 .(至少從兩個(gè)不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示一個(gè)正比例函數(shù)與一個(gè)一次函數(shù)的圖象,它們交于點(diǎn)A(4,3),一次函數(shù)的圖象與y軸交于點(diǎn)B,且OA=OB.
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O中,AC為直徑,MA、MB分別切⊙O于點(diǎn)A、B.
(1)如圖①,若∠BAC=23°,求∠AMB的大小;
(Ⅱ)如圖②,過點(diǎn)B作BD∥MA,交AC于點(diǎn)E,交⊙O于點(diǎn)D,若BD=MA,求∠AMB的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓同學(xué)們了解自己的體育水平,初二 1 班的體育老師對(duì)全班 45 名學(xué)生進(jìn)行了一次體育模擬測(cè)試(得分均為整數(shù)),成績滿分為 10 分,1 班的體育委員根據(jù)這次測(cè)試成績,制作了統(tǒng)計(jì)圖和分析表如下:
根據(jù)以上信息,解答下列問題
(1)這個(gè)班共有男生 人,共有女生 人;
(2)求初二 1 班女生體育成績的眾數(shù)是 ,男生體育成績的中位數(shù)是 。
(3)若全年級(jí)有 630 名學(xué)生,體育測(cè)試 9 分及以上的成績?yōu)?/span> A 等,試估計(jì)全年級(jí)體育測(cè)試成績達(dá)到 A 等的有多少名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,4),B(3,2),C(6,3).
(1)畫出△ABC關(guān)于x軸對(duì)稱的△ABC;
(2)以M點(diǎn)為位似中心,在網(wǎng)格中畫出△ABC的位似圖形△ABC,使△A2B2C2與△ABC的相似比為2:1.
(3)請(qǐng)寫出(2)中放大后的△ABC中AB邊的中點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OF⊥CD,OE平分∠BOC.
(1)若∠BOE=60°,求∠AOE的度數(shù);
(2)若∠BOD:∠BOE=4:3,求∠AOE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com