【題目】如圖所示,在平面直角坐標系中,已知點A(1,0), B(0,),對OAB連續(xù)作旋轉變換,依次得到1,2,3,4,,則2019的直角頂點的坐標為______________

【答案】(2019+6730)

【解析】

根據勾股定理列式求出AB的長,再根據第四個三角形與第一個三角形的位置相同可知每三個三角形為一個循環(huán)組依次循環(huán),然后求出一個循環(huán)組旋轉前進的長度,再用2019除以3,根據商為673可知第2019個三角形的直角頂點為循環(huán)組的最后一個三角形的頂點,求出即可.

∵點A(1,0) B(0,),

AB

由圖可知,每三個三角形為一個循環(huán)組依次循環(huán),一個循環(huán)組前進的長度為:213+,

2019÷3673

∴△2019的直角頂點是第673個循環(huán)組的最后一個三角形的直角頂點,

673×(3+)=2019+673,

∴△2019的直角頂點的坐標為(2019+673,0).

故答案為:(2019+673,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,ACBC,在以AB的中點O為坐標原點,AB所在直線為x軸建立的平面直角坐標系中,將△ABC繞點B順時針旋轉,使點A旋轉至y軸的正半軸上的點A'處,若AOOB2,則圖中陰影部分面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學校組織的文明出行知識競賽中,81)和82)班參賽人數(shù)相同,成績分為A、B、C三個等級,其中相應等級的得分依次記為A100分、B90分、C80分,達到B級以上(含B級)為優(yōu)秀,其中82)班有2人達到A級,將兩個班的成績整理并繪制成如下的統(tǒng)計圖,請解答下列問題:

1)求各班參賽人數(shù),并補全條形統(tǒng)計圖;

2)此次競賽中82)班成績?yōu)?/span>C級的人數(shù)為_______人;

3)小明同學根據以上信息制作了如下統(tǒng)計表:

平均數(shù)(分)

中位數(shù)(分)

方差

81)班

m

90

n

82)班

91

90

29

請分別求出mn的值,并從優(yōu)秀率和穩(wěn)定性方面比較兩個班的成績;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形AOBC中,OB4,OA3.分別以OB、OA所在直線為x軸、y軸,建立如圖1所示的平面直角坐標系.FBC邊上一個動點(不與B、C重合).過點F的反比例函數(shù)yk0)的圖象與邊AC交于點E

1)當點F運動到邊BC的中點時,點E的坐標為__________;

2)連接EF,求∠EFC的正切值;

3)如圖2,將△CEF沿EF折疊,點C恰好落在邊OB上的點G處,求BG的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在所給的方格紙中,每個小正方形的邊長都是1,四邊形是平行四邊形,連結(點,,均在格點上),請按要求完成下列作圖任務.要求:①僅用無刻度直尺,且不能用直尺中的直角;②保留作圖痕跡.

1)在圖1中作的中位線,且;

2)在圖2中取邊上點,以,為鄰邊作,且的面積等于的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是以AB為直徑的O上一點,CDO切線,DAB的延長線上,作AECDE

1)求證:AC平分BAE;

2)若AC=2CE=6,求O的半徑;

3)請?zhí)剿鳎壕段AD,BD,CD之間有何數(shù)量關系?請證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1ABCCDE均為等邊三角形,直線AD和直線BE交于點F

①求證:ADBE

②求∠AFB的度數(shù).

(2)如圖2,ABCCDE均為等腰直角三角形,∠ABC=∠DEC90°,直線AD和直線BE交于點F

①求證:ADBE;

②若ABBC3,DEEC.將CDE繞著點C在平面內旋轉,當點D落在線段BC上時,在圖3中畫出圖形,并求BF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,DBC中點,AEBD,且AEBD

1)求證:四邊形AEBD是矩形;

2)連接CEAB于點F,若∠ABE30°,AE2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形為矩形,連接,,點邊上.

1)如圖①,若,,求的面積;

2)如圖②,延長至點,使得,連接并延長交于點,過點于點,連接,求證:;

3)如圖③,將線段繞點旋轉一定的角度)得到線段,連接,點始終為的中點,連接.已知,直接寫出的取值范圍.

查看答案和解析>>

同步練習冊答案