【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交ABD,延長(zhǎng)AOOE,連接CD,CE,若CEO的切線,

1)求證:CDO的切線;

2)若BC3AB5,求平行四邊形OABC的面積.

【答案】1)見(jiàn)解析;(212

【解析】

1)連接OD,證出△EOC≌△DOC,推出∠ODC=∠OEC90°,根據(jù)切線的判定推出即可;

2)求出CD,根據(jù)三角形的面積公式求出DF,根據(jù)平行四邊形的面積公式求出即可.

CE是⊙O的切線,

∴∠OEC90°,

連接OD,如圖1,

∵四邊形OABC是平行四邊形,

AOBC,OCAB,OCAB,

∴∠EOC=∠A,∠COD=∠ODA,

ODOA

∴∠A=∠ODA,

∴∠EOC=∠DOC,

在△EOC和△DOC中,

,

∴△EOC≌△DOCSAS),

∴∠ODC=∠OEC90°

ODCD,

CD是⊙O的切線;

2)過(guò)DDFOCF,如圖2,

∵四邊形OABC是平行四邊形,

OCAB5OABC3,

RtCDO中,OC5,ODOA3,

CD4,

×CD×OD×OC×DF,

DF,

∴平行四邊形OABC的面積=OC×DF12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解節(jié)能減排、垃圾分類(lèi)等知識(shí)的普及情況,從該校2000名學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,調(diào)查結(jié)果分為“非常了解”、“了解”、“了解較少”、“不了解”四類(lèi),并將調(diào)查結(jié)果繪制成如圖所示兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:

1)補(bǔ)全條形統(tǒng)計(jì)圖并填空,本次調(diào)查的學(xué)生共有   名,估計(jì)該校2000名學(xué)生中“不了解”的人數(shù)為   

2)“非常了解”的4人中有A1、A2兩名男生,B1、B2兩名女生,若從中隨機(jī)抽取兩人去參加環(huán)保知識(shí)競(jìng)賽,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求恰好抽到兩名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DE垂直半徑OA,C為垂足,DE6,連接DB,,過(guò)點(diǎn)EEMBD,交BA的延長(zhǎng)線于點(diǎn)M

1)求的半徑;

2)求證:EM是⊙O的切線;

3)若弦DF與直徑AB相交于點(diǎn)P,當(dāng)∠APD45°時(shí),求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線yx2+mx+n經(jīng)過(guò)點(diǎn)B6,1),C5,0),且與y軸交于點(diǎn)A

1)求拋物線的表達(dá)式及點(diǎn)A的坐標(biāo);

2)點(diǎn)Py軸右側(cè)拋物線上的一點(diǎn),過(guò)點(diǎn)PPQOA,交線段OA的延長(zhǎng)線于點(diǎn)Q,如果∠PAB45°.求證:△PQA∽△ACB;

3)若點(diǎn)F是線段AB(不包含端點(diǎn))上的一點(diǎn),且點(diǎn)F關(guān)于AC的對(duì)稱(chēng)點(diǎn)F′恰好在上述拋物線上,求FF′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一個(gè)長(zhǎng)40m,寬30m的長(zhǎng)方形小操場(chǎng)上,王剛從A點(diǎn)出發(fā),沿著A→B→C的路線以3m/s的速度跑向C.當(dāng)他出發(fā)4s后,張華有東西需要交給他,就從A地出發(fā)沿王剛走的路線追趕,當(dāng)張華跑到距BmD處時(shí),他和王剛在陽(yáng)光下的影子恰好重疊在同一條直線上.此時(shí),A處的小旗在陽(yáng)光下的影子也恰好落在對(duì)角線AC.求:

1)他們的影子重疊時(shí),兩人相距多少米(DE的長(zhǎng))?

2)張華追趕王剛的速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在不透明的袋子中有四張標(biāo)有數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲。

小明畫(huà)出樹(shù)形圖如下:

小華列出表格如下:

第一次

第二次

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(4,2)

3

(1,3

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

回答下列問(wèn)題:

(1)根據(jù)小明畫(huà)出的樹(shù)形圖分析,他的游戲規(guī)則是:隨機(jī)抽出一張卡片后 (填放回不放回),再隨機(jī)抽出一張卡片;

(2)根據(jù)小華的游戲規(guī)則,表格中表示的有序數(shù)對(duì)為

(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認(rèn)為淮獲勝的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)中點(diǎn).連接.作,垂足為的外接圓于點(diǎn),連接.

1)求證:;

2)過(guò)點(diǎn)作圓的切線,交于點(diǎn).若,求的值;

3)在(2)的條件下,當(dāng)時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰RtBPQ的頂點(diǎn)P在正方形ABCD的對(duì)角線AC上(PAC不重合),∠PBQ=90°,QPBC交于E,QP延長(zhǎng)線交ADF,連CQ.

(1)①求證:AP=CQ

②求證:

(2)當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+y軸交于點(diǎn)A,與x軸交于點(diǎn)B、C,連結(jié)AB,以AB為邊向右做平行四邊形ABDE,點(diǎn)E落在拋物線上,點(diǎn)D落在x軸上,若拋物線的對(duì)稱(chēng)軸恰好經(jīng)過(guò)點(diǎn)D,且∠ABD60°,則平行四邊形的面積為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案