問(wèn)題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線段OM與ON的數(shù)量關(guān)系,并說(shuō)明理由.
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過(guò)程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1: ;
依據(jù)2: .
(2)你有與小宇不同的思考方法嗎?請(qǐng)寫(xiě)出你的證明過(guò)程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線上,F(xiàn)D的延長(zhǎng)線與CA的延長(zhǎng)線垂直相交于點(diǎn)M,BC的延長(zhǎng)線與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫(xiě)出證明過(guò)程.
(1)依據(jù)1為:等腰三角形三線合一(或等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合),依據(jù)2為:角平分線上的點(diǎn)到角的兩邊距離相等;
(2)見(jiàn)解析;
(3)OM=ON,OM⊥ON.理由見(jiàn)解析.
解析試題分析:(1)根據(jù)等腰三角形的性質(zhì)和角平分線性質(zhì)得出即可;
(2)證△OMA≌△ONB(AAS),即可得出答案;
(3)求出矩形DMCN,得出DM=CN,△MOC≌△NOB(SAS),推出OM=ON,∠MOC=∠NOB,得出∠MOC-∠CON=∠NOB-∠CON,求出∠MON=∠BOC=90°,即可得出答案.
(1)解:依據(jù)1為:等腰三角形三線合一(或等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合),依據(jù)2為:角平分線上的點(diǎn)到角的兩邊距離相等.
(2)證明:∵CA=CB,
∴∠A=∠B,
∵O是AB的中點(diǎn),
∴OA=OB.
∵DF⊥AC,DE⊥BC,
∴∠AMO=∠BNO=90°,
∵在△OMA和△ONB中
,
∴△OMA≌△ONB(AAS),
∴OM=ON.
(3)解:OM=ON,OM⊥ON.理由如下:
如圖2,連接OC,
∵∠ACB=∠DNB,∠B=∠B,
∴△BCA∽△BND,
∴,
∵AC=BC,
∴DN=NB.
∵∠ACB=90°,
∴∠NCM=90°=∠DNC,
∴MC∥DN,
又∵DF⊥AC,
∴∠DMC=90°,
即∠DMC=∠MCN=∠DNC=90°,
∴四邊形DMCN是矩形,
∴DN=MC,
∵∠B=45°,∠DNB=90°,
∴∠3=∠B=45°,
∴DN=NB,
∴MC=NB,
∵∠ACB=90°,O為AB中點(diǎn),AC=BC,
∴∠1=∠2=45°=∠B,OC=OB(斜邊中線等于斜邊一半),
在△MOC和△NOB中
,
∴△MOC≌△NOB(SAS),
∴OM=ON,∠MOC=∠NOB,
∴∠MOC-∠CON=∠NOB-∠CON,
即∠MON=∠BOC=90°,
∴OM⊥ON.
考點(diǎn):全等三角形的判定與性質(zhì);角平分線的性質(zhì);等腰三角形的性質(zhì);矩形的判定與性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°
(1)∠DCA的度數(shù);
(2)∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線AC∥DF,C、E分別在AB、DF上,小華想知道∠ACE和∠DEC是否互補(bǔ),但是他有沒(méi)有帶量角器,只帶了一副三角板,于是他想了這樣一個(gè)辦法:首先連結(jié)CF,再找出CF的中點(diǎn)O,然后連結(jié)EO并延長(zhǎng)EO和直線AB相交于點(diǎn)B,經(jīng)過(guò)測(cè)量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補(bǔ),而且他還發(fā)現(xiàn)BC=EF。
以下是他的想法,請(qǐng)你填上根據(jù)。小華是這樣想的:
因?yàn)镃F和BE相交于點(diǎn)O,
根據(jù) 得出∠COB=∠EOF;
而O是CF的中點(diǎn),那么CO=FO,又已知 EO=BO,
根據(jù) 得出△COB≌△FOE,
根據(jù) 得出BC=EF,
根據(jù) 得出∠BCO=∠F,
既然∠BCO=∠F,根據(jù) 出AB∥DF,
既然AB∥DF,根據(jù) 得出∠ACE和∠DEC互補(bǔ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).請(qǐng)將解題過(guò)程填寫(xiě)完整.
解:∵EF∥AD(已知)
∴∠2= _________。ā 。
又∵∠1=∠2(已知)
∴∠1=∠3( 。
∴AB∥ _________。ā 。
∴∠BAC+ _________ =180°( 。
∵∠BAC=70°(已知)
∴∠AGD= _________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知直線AB及AB外一點(diǎn)C, 過(guò)點(diǎn)C作直線EF∥AB (要求:不寫(xiě)作法,保留作圖痕跡)(5分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖①所示,已知,BC∥OA,∠B=∠A=100°,試回答下列問(wèn)題:
⑴試說(shuō)明:OB∥AC;
⑵如圖②,若點(diǎn)E、F在BC上,且∠FOC=∠AOC ,OE平分∠BOF.試求∠EOC的度數(shù);
⑶在⑵的條件下,若左右平行移動(dòng)AC,如圖③,那么∠OCB:∠OFB的比值是否隨之發(fā)生變化?若變化,試說(shuō)明理由;若不變,求出這個(gè)比值;
⑷在⑶的條件下,當(dāng)∠OEB=∠OCA時(shí),試求∠OCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知DE∥BC,CD是∠ACB的平分線,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com