精英家教網 > 初中數學 > 題目詳情

【題目】下列說法中錯誤的是( )

A. ABC中,∠C=A-B,則ABC為直角三角形

B. ABC中,若∠A∶∠B∶∠C=523,則ABC為直角三角形

C. ABC中,若a=c,b=c,則ABC為直角三角形

D. ABC中,若abc=224,則ABC為直角三角形

【答案】D

【解析】

根據勾股定理的逆定理和三角形內角和定理逐個判斷即可.

A、∵在ABC中,∠A:B:C=5:2:3,

∴∠A=×180°=90°,

∴△ABC為直角三角形,故本選項錯誤;

B、∵在ABC中,∠C=AB,

∴∠A=B+C,

∵∠A+B+C=180°,

∴∠A=90°,

∴△ABC為直角三角形,故本選項錯誤;

C、∵在ABC中,a=c,b=c,

a2+b2=c2,

∴∠C=90°,

∴△ABC是直角三角形,故本選項錯誤;

D、∵在ABC中,a:b:c=2:2:4,

a2+b2≠c2

∴△ABC不是直角三角形,故本選項正確;

故選:D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的高,AE是∠BAC平分線.

(1)若∠B=38°,C=70°,求∠DAE的度數;

(2)若∠B>C,試探求∠DAE、B、C之間的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=﹣x2+bx+c的部分圖象如圖所示,A(1,0),B(0,3).
(1)求拋物線的解析式;
(2)結合函數圖象,寫出當y<3時x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線C1:y=﹣ x2+mx+m+
(1)①無論m取何值,拋物線經過定點P
②隨著m的取值變化,頂點M(x,y)隨之變化,y是x的函數,則其函數C2關系式為;
(2)如圖1,若該拋物線C1與x軸僅有一個公共點,請在圖1中畫出頂點M滿足的函數C2的大致圖象,平行于y軸的直線l分別交C1、C2于點A、B,若△PAB為等腰直角三角形,判斷直線l滿足的條件,并說明理由;

(3)如圖2,拋物線C1的頂點M在第二象限,交x軸于另一點C,拋物線上點M與點P之間一點D的橫坐標為﹣2,連接PD、CD、CM、DM,若SPCD=SMCD , 求二次函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列結論中正確的是( )

A. 三角形的一個外角大于這個三角形的任何一個內角

B. 三角形按邊分類可以分為:不等邊三角形、等腰三角形、等邊三角形

C. 三角形的三個內角中,最多有一個鈍角

D. 若三條線段、、,滿足,則此三條線段一定能組成三角形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(點A在點B的左邊)AB=4,與y軸交于點C,OC=OA,點D為拋物線的頂點.
(1)求拋物線的解析式;
(2)點M(m,0)為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,可得矩形PQNM,如圖1,點P在點Q左邊,當矩形PQNM的周長最大時,求m的值,并求出此時的△AEM的面積;
(3)已知H(0,﹣1),點G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點G的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是 的中點,CE⊥AB于E,BD交CE于點F.
(1)求證:CF=BF;
(2)若CD=6,AC=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同。

(1)籃球和排球的單價各是多少元?

(2)若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將邊長為6的正三角形紙片按如下順序進行兩次折疊,展開后,得折痕(如圖①),為其交點.

(1)探求的數量關系,并說明理由;

(2)如圖②,若分別為上的動點.

①當的長度取得最小值時,求的長度;

②如圖③,若點在線段上,,則的最小值為 .

查看答案和解析>>

同步練習冊答案