【題目】下列說(shuō)法中錯(cuò)誤的是( )
A. 在△ABC中,∠C=∠A-∠B,則△ABC為直角三角形
B. 在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,則△ABC為直角三角形
C. 在△ABC中,若a=c,b=c,則△ABC為直角三角形
D. 在△ABC中,若a∶b∶c=2∶2∶4,則△ABC為直角三角形
【答案】D
【解析】
根據(jù)勾股定理的逆定理和三角形內(nèi)角和定理逐個(gè)判斷即可.
A、∵在△ABC中,∠A:∠B:∠C=5:2:3,
∴∠A=×180°=90°,
∴△ABC為直角三角形,故本選項(xiàng)錯(cuò)誤;
B、∵在△ABC中,∠C=∠A∠B,
∴∠A=∠B+∠C,
∵∠A+∠B+∠C=180°,
∴∠A=90°,
∴△ABC為直角三角形,故本選項(xiàng)錯(cuò)誤;
C、∵在△ABC中,a=c,b=c,
∴a2+b2=c2,
∴∠C=90°,
∴△ABC是直角三角形,故本選項(xiàng)錯(cuò)誤;
D、∵在△ABC中,a:b:c=2:2:4,
∴a2+b2≠c2,
∴△ABC不是直角三角形,故本選項(xiàng)正確;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是∠BAC平分線(xiàn).
(1)若∠B=38°,∠C=70°,求∠DAE的度數(shù);
(2)若∠B>∠C,試探求∠DAE、∠B、∠C之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=﹣x2+bx+c的部分圖象如圖所示,A(1,0),B(0,3).
(1)求拋物線(xiàn)的解析式;
(2)結(jié)合函數(shù)圖象,寫(xiě)出當(dāng)y<3時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C1:y=﹣ x2+mx+m+ .
(1)①無(wú)論m取何值,拋物線(xiàn)經(jīng)過(guò)定點(diǎn)P;
②隨著m的取值變化,頂點(diǎn)M(x,y)隨之變化,y是x的函數(shù),則其函數(shù)C2關(guān)系式為;
(2)如圖1,若該拋物線(xiàn)C1與x軸僅有一個(gè)公共點(diǎn),請(qǐng)?jiān)趫D1中畫(huà)出頂點(diǎn)M滿(mǎn)足的函數(shù)C2的大致圖象,平行于y軸的直線(xiàn)l分別交C1、C2于點(diǎn)A、B,若△PAB為等腰直角三角形,判斷直線(xiàn)l滿(mǎn)足的條件,并說(shuō)明理由;
(3)如圖2,拋物線(xiàn)C1的頂點(diǎn)M在第二象限,交x軸于另一點(diǎn)C,拋物線(xiàn)上點(diǎn)M與點(diǎn)P之間一點(diǎn)D的橫坐標(biāo)為﹣2,連接PD、CD、CM、DM,若S△PCD=S△MCD , 求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論中正確的是( )
A. 三角形的一個(gè)外角大于這個(gè)三角形的任何一個(gè)內(nèi)角
B. 三角形按邊分類(lèi)可以分為:不等邊三角形、等腰三角形、等邊三角形
C. 三角形的三個(gè)內(nèi)角中,最多有一個(gè)鈍角
D. 若三條線(xiàn)段、、,滿(mǎn)足,則此三條線(xiàn)段一定能組成三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+2ax+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)AB=4,與y軸交于點(diǎn)C,OC=OA,點(diǎn)D為拋物線(xiàn)的頂點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)M(m,0)為線(xiàn)段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線(xiàn),與直線(xiàn)AC交于點(diǎn)E,與拋物線(xiàn)交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線(xiàn)于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM,如圖1,點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQNM的周長(zhǎng)最大時(shí),求m的值,并求出此時(shí)的△AEM的面積;
(3)已知H(0,﹣1),點(diǎn)G在拋物線(xiàn)上,連HG,直線(xiàn)HG⊥CF,垂足為F,若BF=BC,求點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是 的中點(diǎn),CE⊥AB于E,BD交CE于點(diǎn)F.
(1)求證:CF=BF;
(2)若CD=6,AC=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校計(jì)劃購(gòu)買(mǎi)籃球、排球共20個(gè),購(gòu)買(mǎi)2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購(gòu)買(mǎi)3個(gè)籃球的費(fèi)用與購(gòu)買(mǎi)5個(gè)排球的費(fèi)用相同。
(1)籃球和排球的單價(jià)各是多少元?
(2)若購(gòu)買(mǎi)籃球不少于8個(gè),所需費(fèi)用總額不超過(guò)800元.請(qǐng)你求出滿(mǎn)足要求的所有購(gòu)買(mǎi)方案,并直接寫(xiě)出其中最省錢(qián)的購(gòu)買(mǎi)方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為6的正三角形紙片按如下順序進(jìn)行兩次折疊,展開(kāi)后,得折痕(如圖①),為其交點(diǎn).
(1)探求與的數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖②,若分別為上的動(dòng)點(diǎn).
①當(dāng)的長(zhǎng)度取得最小值時(shí),求的長(zhǎng)度;
②如圖③,若點(diǎn)在線(xiàn)段上,,則的最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com