【題目】如圖,在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,則BD的長為 .
【答案】
【解析】
試題分析:過點D作DE⊥AB于E,根據(jù)角平分線上的點到角的兩邊距離相等可得點D到AC的距離也等于DE,然后利用△ABC的面積列方程求出DE,再判斷出△ADE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求出AE,再求出BE,然后利用勾股定理列式計算即可得解.
解:如圖,過點D作DE⊥AB于E,
∵AD平分∠BAC,
∴點D到AC的距離也等于DE,
∴S△ABC=×3DE+×4DE=×3×4,
解得DE=,
∵AD平分∠BAC,∠BAC=90°,
∴∠DAE=45°,
∴△ADE是等腰直角三角形,
∴AE=DE=,
∴BE=3﹣=,
在Rt△BDE中,BD===.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+6分別交x軸、y軸于A、B兩點,拋物線y=﹣x2+8,與y軸交于點D,點P是拋物線在第一象限部分上的一動點,過點P作PC⊥x軸于點C.
(1)點A的坐標為 ,點D的坐標為 ;
(2)探究發(fā)現(xiàn):
①假設P與點D重合,則PB+PC= ;(直接填寫答案)
②試判斷:對于任意一點P,PB+PC的值是否為定值?并說明理由;
(3)試判斷△PAB的面積是否存在最大值?若存在,求出最大值,并求出此時點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,銅亭廣場裝有智能路燈,路燈設備由燈柱AC與支架BD共同組成(點C處裝有安全監(jiān)控,點D處裝有照明燈),燈柱AC為6米,支架BD為2米,支點B到A的距離為4米,AC與地面垂直,∠CBD=60°.某一時刻,太陽光與地面的夾角為45°,求此刻路燈設備在地面上的影長為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產(chǎn)加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應建在離A站多少千米的地方?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖甲,AB∥CD,試問∠2與∠1+∠3的關系是什么,為什么?
(2)如圖乙,AB∥CD,試問∠2+∠4與∠1+∠3+∠5一樣大嗎?為什么?
(3)如圖丙,AB∥CD,試問∠2+∠4+∠6與∠1+∠3+∠5+∠7哪個大?為什么?
你能將它們推廣到一般情況嗎?請寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙三家超市為了促銷一種定價相同的商品,甲超市先降價20%,后又降價10%;乙超市連續(xù)兩次降價15%;丙超市一次降價30%。那么顧客到__________家超市購買這種商品更合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過O點作射線OC,使∠BOC=120°,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)如圖2,將圖1中的三角板繞點O逆時針旋轉(zhuǎn),使邊OM在∠BOC的內(nèi)部,且OM恰好平分∠BOC.此時∠AOM= 度;
(2)如圖3,繼續(xù)將圖2中的三角板繞點O按逆時針方向旋轉(zhuǎn),使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關系,并說明理由;
(3)將圖1中的三角板繞點O以每秒10°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,若直線ON恰好平分∠AOC,則此時三角板繞點O旋轉(zhuǎn)的時間是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com