【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
【答案】相等,理由見解析.
【解析】試題分析:分別過E、F 點作CD的平行線EM、FN,根據(jù)平行線的性質(zhì)得CD∥FN∥EM∥AB,則∠3=∠1,∠4=∠5,∠1=∠6,而∠1=∠2,于是3+∠4=∠5+∠6.
試題解析:分別過E、F 點作CD的平行線EM、FN,如圖
∵AB∥CD,
∴CD∥FN∥EM∥AB,
∴∠3=∠2,∠4=∠5,∠1=∠6,
而∠1=∠2,
∴∠3+∠4=∠5+∠6,
即∠BEF=∠EFC.
【題型】解答題
【結(jié)束】
26
【題目】(1)填空21-20=2( ); 22-21=2( ) ;23 -22=2( )
(2)請用字母表示第n個等式,并驗證你的發(fā)現(xiàn).
(3)利用(2)中你的發(fā)現(xiàn),求20+21+22+23+…+22016+22017的值.
【答案】(1)0,1,2;(2)證明見解析;(3)
【解析】試題分析:(1)根據(jù)0次冪的意義和乘方的意義進行計算即可;
(2)觀察各等式得到2的相鄰兩個非負整數(shù)冪的差等于其中較小的2的非負整數(shù)冪,即2n-2n-1=2n-1(n為正整數(shù));
(3)由于21-20=20,22-21=21,23-22=22,…22018-22017=22017,然后把等式左邊與左邊相加,右邊與右邊相加即可求解.
試題解析:(1)21-20=1=20;22-21=2=21;23-22=4=22,
故答案為:0,1,2;
(2)觀察可得:2n-2n-1=2n-1(n為正整數(shù)),證明如下:
2n-2n-1=2×2n-1-2n-1=2n-1×(2-1)=2n-1;
(3)∵21-20=20,
22-21=21,
23-22=22,
…
22018-22017=22017,
∴22018-20=20+21+22+23+…+22016+22017,
∴20+21+22+23+…+22016+22017的值為22018-1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AD、BD是⊙O的弦,BC是⊙O的切線,切點為B,OC∥AD,BA、CD的延長線相交于點E.
(1)求證:DC是⊙O的切線;
(2)若AE=1,ED=3,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點A是半圓上的一個三等分點,B是劣弧的中點,點P是直徑MN上的一個動點,⊙O的半徑為1,則AP+PB的最小值_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎單車上學(xué),當他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校以下是他本次上學(xué)所用的時間與路程的關(guān)系示意圖.
根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是________米
(2)小明在書店停留了___________分鐘.
(3)本次上學(xué)途中,小明一共行駛了________ 米,一共用了______ 分鐘.
(4)在整個上學(xué)的途中_________(哪個時間段)小明騎車速度最快,最快的速度是___________米/分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.
(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時元收費.
(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)
(2)下表是這戶居民3月、4月的用電情況和交費情況
月份 | 用電量(千瓦時) | 交電費總金額(元) |
3 | 80 | 25 |
4 | 45 | 10 |
根據(jù)上表數(shù)據(jù),求電廠規(guī)定的A值為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com