如圖,在Rt△ABC紙片上可按如圖所示方式剪出一正方體表面展開圖,直角三角形的兩直角邊與正方體展開圖左下角正方形的邊共線,斜邊恰好經(jīng)過兩個正方形的頂點.已知BC=24cm,則這個展開圖可折成的正方體的體積為( 。
分析:首先設(shè)這個展開圖圍成的正方體的棱長為xcm,然后延長FE交AC于點D,根據(jù)三角函數(shù)的性質(zhì),可求得AC的長,然后由相似三角形的對應(yīng)邊成比例,即可求得答案.
解答:解:如圖,設(shè)這個展開圖圍成的正方體的棱長為xcm,
延長FE交AB于點D,
則EF=2xcm,EG=xcm,DF=4xcm,
∵DF∥BC,
∴∠EFG=∠C,
∵tan∠EFG=
EG
EF
=
1
2
,
∴tan∠C=
AB
BC
=
1
2
,
∵BC=24cm,
∴AB=12cm,
∴AD=AB-BD=12-2x(cm)
∵DF∥BC,
∴△ADF∽△ABC,
DF
BC
=
AD
AB
,
4x
24
=
12-2x
12
,
解得:x=3,
即這個展開圖圍成的正方體的棱長為3cm,
∴這個展開圖可折成的正方體的體積為27cm3
故選:B.
點評:此題考查了相似三角形的判定與性質(zhì)以及三角函數(shù)等知識.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案