【題目】如圖,BD是矩形ABCD的對(duì)角線,,將沿射線BD方向平移到的位置,使為BD中點(diǎn),連接,,,,如圖.
求證:四邊形是菱形;
四邊形的周長(zhǎng)為______;
將四邊形沿它的兩條對(duì)角線剪開,用得到的四個(gè)三角形拼成與其面積相等的矩形,直接寫出所有可能拼成的矩形周長(zhǎng).
【答案】(1)見解析;(2);(3)或.
【解析】
有一組鄰邊相等的平行四邊形是菱形,據(jù)此進(jìn)行證明即可;
先判定四邊形是菱形,再根據(jù)邊長(zhǎng),即可得到四邊形的周長(zhǎng)為;
根據(jù)兩種不同的拼法,分別求得可能拼成的矩形周長(zhǎng).
解:是矩形ABCD的對(duì)角線,,
,
由平移可得,,,
四邊形是平行四邊形,
為BD中點(diǎn),
中,,
又,
是等邊三角形,
,
四邊形是菱形;
由平移可得,,,
,
四邊形是平行四邊形,
由可得,,
四邊形是菱形,
,
四邊形的周長(zhǎng)為;
將四邊形沿它的兩條對(duì)角線剪開,用得到的四個(gè)三角形拼成與其面積相等的矩形如下:
矩形周長(zhǎng)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一副三角板的三個(gè)內(nèi)角分別是90°,45°,45°和90°,60°,30°,按如圖所示疊放在一起(點(diǎn)A,D,B在同一直線上),若固定△ABC,將△BDE繞著公共頂點(diǎn)B順時(shí)針旋轉(zhuǎn)α度(0<α<180),當(dāng)邊DE與△ABC的某一邊平行時(shí),相應(yīng)的旋轉(zhuǎn)角α的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(m+1)x2+2mx+(m﹣3)=0有實(shí)數(shù)根.
(1)求m的取值范圍;
(2)m為何值時(shí),方程有兩個(gè)相等的實(shí)數(shù)根?并求出這兩個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,AB=AC,∠ABC=∠ACB,D是AB的中點(diǎn),DE⊥AB交AC于E,若∠BEC=∠C.
(1)若BE平分∠ABC,求∠A的度數(shù);
(2)若△ABC的周長(zhǎng)為10,△BCE的周長(zhǎng)為6,求BC的長(zhǎng)度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)銷商經(jīng)銷的學(xué)生用品,他以每件280元的價(jià)格購(gòu)進(jìn)某種型號(hào)的學(xué)習(xí)機(jī),以每件360元的售價(jià)銷售時(shí),每月可售出60個(gè),為了擴(kuò)大銷售,該經(jīng)銷商采取降價(jià)的方式促銷,在銷售中發(fā)現(xiàn),如果每個(gè)學(xué)習(xí)機(jī)降價(jià)1元,那么每月就可以多售出5個(gè).
降價(jià)前銷售這種學(xué)習(xí)機(jī)每月的利潤(rùn)是多少元?
經(jīng)銷商銷售這種學(xué)習(xí)機(jī)每月的利潤(rùn)要達(dá)到7200元,且盡可能讓利于顧客,求每個(gè)學(xué)習(xí)機(jī)應(yīng)降價(jià)多少元?
在的銷售中,銷量可好,經(jīng)銷商又開始漲價(jià),漲價(jià)后每月銷售這種學(xué)習(xí)機(jī)的利潤(rùn)能達(dá)到10580元嗎?若能,請(qǐng)求出漲多少元;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如下圖所示,且關(guān)于x的一元二次方程ax2+bx+c-m=0沒有實(shí)數(shù)根,有下列結(jié)論:①b2-4ac>0;②abc<0;③m>2.其中,正確結(jié)論的個(gè)數(shù)是
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,
①寫出A、B、C的坐標(biāo).
②以原點(diǎn)O為對(duì)稱中心,畫出△ABC關(guān)于原點(diǎn)O對(duì)稱的△A1B1C1,并寫出A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,AB=6,第一次平移長(zhǎng)方形ABCD沿AB的方向向右平移5個(gè)單位長(zhǎng)度,得到長(zhǎng)方形A1B1C1D1,第2次平移長(zhǎng)方形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位長(zhǎng)度,得到長(zhǎng)方形A2B2C2D2,…,第n次平移長(zhǎng)方形An-1Bn-1Cn-1Dn-1沿An-1Bn-1的方向向右平移5個(gè)單位長(zhǎng)度,得到長(zhǎng)方形AnBnCnDn(n>2),若ABn的長(zhǎng)度為2 026,則n的值為( ).
A. 407B. 406C. 405D. 404
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com