【題目】如圖,長方形ABCD中,AB6,第一次平移長方形ABCD沿AB的方向向右平移5個單位長度,得到長方形A1B1C1D1,第2次平移長方形A1B1C1D1沿A1B1的方向向右平移5個單位長度,得到長方形A2B2C2D2,,第n次平移長方形An1Bn1Cn1Dn1沿An1Bn1的方向向右平移5個單位長度,得到長方形AnBnCnDnn2),若ABn的長度為2 026,則n的值為( ).

A. 407B. 406C. 405D. 404

【答案】D

【解析】

根據(jù)平移的性質(zhì)得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,進(jìn)而求出AB1AB2的長,由此得出ABn=5(n+1)×5+1,將2026代入求出n即可.

AB=6,第1次平移將矩形ABCD沿AB的方向向右平移5個單位,得到矩形A1B1C1D1,

2次平移將矩形A1B1C1D1沿A1B1的方向向右平移5個單位,得到矩形A2B2C2D2…,

AA1=5A1A2=5,A2B1=A1B1-A1A2=6-5=1

AB1=AA1+A1A2+A2B1=5+5+1==2×5+1=11

AB2的長為:5+5+6=3×5+1=16,

……

ABn=5(n+1)+1

5(n+1)+1=2026

解得:n=404,

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是矩形ABCD的對角線,,沿射線BD方向平移到的位置,使BD中點,連接,,,如圖

求證:四邊形是菱形;

四邊形的周長為______

將四邊形沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形,直接寫出所有可能拼成的矩形周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將長方形ABCD按如圖所示沿EF所在直線折疊,點C落在AD上的點C′處,點D落在點D′.

(1)求證:△EFC′是等腰三角形.

(2)如果∠1=65°,求∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm,如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為每秒2cm1cm,F(xiàn)Q⊥BC,分別交AC、BC于點PQ,設(shè)運動時間為t秒(0<t<4).

(1)連接EF,若運動時間t=   時,EF⊥AC;

(2)連接EP,當(dāng)△EPC的面積為3cm2時,求t的值;

(3)△EQP∽△ADC,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.

(1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖1的位置時

①請說明△ADC≌△CEB的理由;

②請說明DE=AD+BE的理由;

(2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖2的位置時,DE、AD、BE具有怎樣的等量關(guān)系?請直接在橫線上寫出這個等量關(guān)系:__________;

(3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖3的位置時,DE、AD、BE具有怎樣的等量關(guān)系?請直接在橫線上寫出這個等量關(guān)系:__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小河上有一拱橋,拱橋及河道的截面輪廓線由拋物線的一部分ACB

矩形的三邊AE,EDDB組成,已知河底ED是水平的,ED16m,AE8m,拋物線的頂點CED

距離是11m,以ED所在的直線為x軸,拋物線的對稱軸為y軸建立平面直角坐標(biāo)系.

(1)求拋物線的解析式;

(2)已知從某時刻開始的40h內(nèi),水面與河底ED的距離h(單位:m)隨時間t(單位:h)的變化滿足函數(shù)

關(guān)系且當(dāng)水面到頂點C的距離不大于5m時,需禁止船只通行,請通過計算說明:在這一時段內(nèi),需多少小時禁止船只通行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為  ▲  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB邊的垂直平分線l1BCD,AC邊的垂直平分線l2BCE,l1l2相交于點O.△ADE的周長為6cm

1)求BC的長;

2)分別連結(jié)OA、OB、OC,若△OBC的周長為16cm,求OA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點DAB下方⊙O上一點,點C為弧ABD的中點,連接CD,CA

1)求證:ABD=2BDC;

2)過點CCHABH,交ADE,求證:EA=EC;

3)在(2)的條件下,若OH=5,AD=24,求線段DE的長度

查看答案和解析>>

同步練習(xí)冊答案