【題目】(1)已知2x﹣1的平方根是±6,2x+y﹣1的算術(shù)平方根是5,求2x﹣3y+11的立方根.
(2)已知x是1的平方根,求代數(shù)式(x2017﹣1)(x2018﹣712)(x2019+1)(x2020+712)+1000x的立方根.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,BC邊上有一點(diǎn)E,BE=4,將紙片折疊,使A點(diǎn)與E點(diǎn)重合,折痕MN交AD于M點(diǎn),則線段AM的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是正方形,△AEF是等邊三角形,E,F(xiàn)分別位于DC邊和BC邊上.
(1)求∠DAE的度數(shù);
(2)若正方形ABCD的邊長(zhǎng)為1,求等邊三角形AEF的面積;
(3)將△AEF繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn)m(0<m<180)度,使得點(diǎn)A落在正方形ABCD的邊上,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,P為線段AD上的一個(gè)動(dòng)點(diǎn),PE⊥AD交直線BC于點(diǎn)E.
(1)若∠B=30°,∠ACB=80°,求∠E的度數(shù);
(2)當(dāng)P點(diǎn)在線段AD上運(yùn)動(dòng)時(shí),猜想∠E與∠B、∠ACB的數(shù)量關(guān)系,寫出結(jié)論無(wú)需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB∥CD,直線l與直線AB,CD相交于點(diǎn)E,F,點(diǎn)P是射線EA上的一個(gè)動(dòng)點(diǎn)(不包括端點(diǎn)E),將△EPF沿PF折疊,使頂點(diǎn)E落在點(diǎn)Q處.
⑴若∠PEF=48°,點(diǎn)Q恰好落在其中的一條平行線上,則∠EFP的度數(shù)為 .
⑵若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一分鐘投籃測(cè)試規(guī)定,得6分以上為合格,得9分以上為優(yōu)秀,甲、乙兩組同學(xué)的一次測(cè)試成績(jī)?nèi)缦拢?
成績(jī)(分) | 4 | 5 | 6 | 7 | 8 | 9 |
甲組(人) | 1 | 2 | 5 | 2 | 1 | 4 |
乙組(人) | 1 | 1 | 4 | 5 | 2 | 2 |
(1)請(qǐng)你根據(jù)上述統(tǒng)計(jì)數(shù)據(jù),把下面的圖和表補(bǔ)充完整;
一分鐘投籃成績(jī)統(tǒng)計(jì)分析表:
統(tǒng)計(jì)量 | 平均分 | 方差 | 中位數(shù) | 合格率 | 優(yōu)秀率 |
甲組 | 2.56 | 6 | 80.0% | 26.7% | |
乙組 | 6.8 | 1.76 | 86.7% | 13.3% |
(2)下面是小明和小聰?shù)囊欢螌?duì)話,請(qǐng)你根據(jù)(1)中的表,寫出兩條支持小聰?shù)挠^點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,連接AC,拋物線y=x2﹣4x﹣2經(jīng)過A,B兩點(diǎn).
(1)求A點(diǎn)坐標(biāo)及線段AB的長(zhǎng);
(2)若點(diǎn)P由點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB邊向點(diǎn)B移動(dòng),1秒后點(diǎn)Q也由點(diǎn)A出發(fā)以每秒7個(gè)單位的速度沿AO,OC,CB邊向點(diǎn)B移動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止移動(dòng),點(diǎn)P的移動(dòng)時(shí)間為t秒.
①當(dāng)PQ⊥AC時(shí),求t的值;
②當(dāng)PQ∥AC時(shí),對(duì)于拋物線對(duì)稱軸上一點(diǎn)H,∠HOQ>∠POQ,求點(diǎn)H的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過A,C畫直線.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P在x軸正半軸上,且PA=PC,求OP的長(zhǎng);
(3)點(diǎn)M在二次函數(shù)圖象上,以M為圓心的圓與直線AC相切,切點(diǎn)為H.
①若M在y軸右側(cè),且△CHM∽△AOC(點(diǎn)C與點(diǎn)A對(duì)應(yīng)),求點(diǎn)M的坐標(biāo);
②若⊙M的半徑為 ,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com