【題目】如圖,小強(qiáng)作出邊長(zhǎng)為1的第1個(gè)等邊△A1B1C1 , 計(jì)算器面積為S1 , 然后分別取△A1B1C1三邊的中點(diǎn)A2、B2、C1 , 作出第2個(gè)等邊△A2B2C2 , 計(jì)算其面積為S2 , 用同樣的方法,作出第3個(gè)等邊△A3B3C3 , 計(jì)算其面積為S3 , 按此規(guī)律進(jìn)行下去,…,由此可得,第20個(gè)等邊△A20B20C20的面積S20= .
【答案】
【解析】解:正△A1B1C1的面積是 ,
而△A2B2C2與△A1B1C1相似,并且相似比是1:2,
則面積的比是 ,則正△A2B2C2的面積是 × ;
因而正△A3B3C3與正△A2B2C2的面積的比也是,面積是 ×( )2;
依此類推△AnBnCn與△An﹣1Bn﹣1Cn﹣1的面積的比是 ,第n個(gè)三角形的面積是 ( )n﹣1.
所以第20個(gè)正△A20B20C20的面積是 .
所以答案是: .
【考點(diǎn)精析】本題主要考查了等邊三角形的性質(zhì)和三角形中位線定理的相關(guān)知識(shí)點(diǎn),需要掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A,B在數(shù)軸上的位置如圖所示,其對(duì)應(yīng)的數(shù)分別是a和b,對(duì)于以下結(jié)論:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正確的是( )
A.甲、乙
B.丙、丁
C.甲、丙
D.乙、丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,我們把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).已知點(diǎn)A(0,4),點(diǎn)B是x軸正半軸上的整點(diǎn),記△AOB內(nèi)部(不包括邊界)的整點(diǎn)個(gè)數(shù)為m.當(dāng)點(diǎn)B的橫坐標(biāo)為4時(shí),m的值是_____.當(dāng)點(diǎn)B的橫坐標(biāo)為4n(n為正整數(shù))時(shí),m=_____(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,折疊矩形ABCD,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)F處,若BC=8,AB=6,則線段CE的長(zhǎng)度是( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若我們規(guī)定三角“”表示為:abc;方框“”表示為:(xm+yn).例如:=1×19×3÷(24+31)=3.請(qǐng)根據(jù)這個(gè)規(guī)定解答下列問題:
(1)計(jì)算:= ______ ;
(2)代數(shù)式為完全平方式,則k= ______ ;
(3)解方程:=6x2+7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格中建立了平面直角坐標(biāo)系,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,將四邊形ABCD繞坐標(biāo)原點(diǎn)順時(shí)針方向旋轉(zhuǎn)180°后得到四邊形A1B1C1D1 .
(1)寫出點(diǎn)D1的坐標(biāo);
(2)將四邊形A1B1C1D1平移,得到四邊形A2B2C2D2 , 若點(diǎn)D2(4,5),畫出平移后的圖形;
(3)求點(diǎn)D旋轉(zhuǎn)到點(diǎn)D1所經(jīng)過的路線長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別在線段OA,OC上,且OB=OD,∠1=∠2,AE=CF.
(1)證明:△BEO≌△DFO;
(2)證明:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°點(diǎn)A、B分別在線段OM、ON上(不與點(diǎn)O重合),BC是∠ABN的平分線,BC的反向延長(zhǎng)線與∠BAO的平分線交于點(diǎn)D.
(1)若∠BAO=60°,求∠ABC和∠D的度數(shù).
(2)若∠BAO=°,求∠ABC和∠D的度數(shù).
(3)若△ABD中有一個(gè)角是另一個(gè)角的3倍,直接寫出此時(shí)∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,己知A(6,0),將線段OA平移至CB,點(diǎn)D在x軸正半軸上(不與點(diǎn)A重合),點(diǎn)C的坐標(biāo)為,且連接OC,AB,CD,BD.
(1)寫出點(diǎn)C的坐標(biāo)為______;點(diǎn)B的坐標(biāo)為________;
(2)當(dāng)的面積是的面積的3倍時(shí),求點(diǎn)D的坐標(biāo);
(3)設(shè),,,判斷之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com