【題目】已知:如圖,折疊矩形ABCD,使點B落在對角線AC上的點F處,若BC8,AB6,則線段CE的長度是( 。

A. 3 B. 4 C. 5 D. 6

【答案】C

【解析】

RtABC中利用勾股定理可求出AC10,設(shè)BEa,則CE8a,根據(jù)折疊的性質(zhì)可得出BEFEaAFAB6,∠AFE=∠B90°,進而可得出FC4,在RtCEF中,利用勾股定理可得出關(guān)于a的一元二次方程,解之即可得出a值,將其代入8a中即可得出線段CE的長度.

解:在RtABC中,AB6BC8,

AC10

設(shè)BEa,則CE8a

根據(jù)翻折的性質(zhì)可知,BEFEa,AFAB6,∠AFE=∠B90°,

FC4

RtCEF中,EFa,CE8aCF4,

CE2EF2+CF2,即(8a2a2+42,

解得:a3

8a5

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸l1與l2相互平行,A,B是l1上的兩點,C,D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】假期,某校為了勤工儉學(xué),要完成整個A小區(qū)的綠化工作,開始由七年級單獨工作了4天,完成整個綠化工作的三分之一,這時九年級也參加工作,兩個年級又共同工作了2天,才全部完成整個綠化工作,則由九年級單獨完成整個綠化工作需要____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A市正北300km處有B市,(1)A市為原點,東西方向的直線為x軸,南北方向的直線為y軸,并以100km1個單位建立平面直角坐標系.

(2)根據(jù)氣象臺預(yù)報,今年7號臺風(fēng)中心位置現(xiàn)在C(5,2)處,并以60千米/時的速度自東向西移動,臺風(fēng)影響范圍半徑為200km,問經(jīng)幾小時后,B市將受到臺風(fēng)影響?并畫出示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線l1y3x2k與直線l2yx+k交點P的縱坐標為5,直線l1與直線l2y軸分別交于A、B兩點.

1)求出點P的橫坐標及k的值;

2)求PAB的面積;

3)點M為直線l1上的一個動點,當MAB面積與PAB面積之比為23時,求此時的點M的坐標1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地震救援隊探測出某建筑物廢墟下方點C處有生命跡象,已知廢墟一側(cè)地面上兩探測點A,B相距3米,探測線與地面的夾角分別是30°和60°(如圖),試確定生命所在點C的深度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小強作出邊長為1的第1個等邊△A1B1C1 , 計算器面積為S1 , 然后分別取△A1B1C1三邊的中點A2、B2、C1 , 作出第2個等邊△A2B2C2 , 計算其面積為S2 , 用同樣的方法,作出第3個等邊△A3B3C3 , 計算其面積為S3 , 按此規(guī)律進行下去,…,由此可得,第20個等邊△A20B20C20的面積S20=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將ABC經(jīng)過一次平移后得到A′B′C′,圖中標出了點D的對應(yīng)點D′.

(1)根據(jù)特征畫出平移后的A′B′C′

(2)利用網(wǎng)格的特征,畫出AC邊上的高BE并標出畫法過程中的特征點;

(3)A′B′C′的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖平行四邊形ABCD中,對角線AC,BD交于點O,EF過點O,并與AD,BC分別交于點E,F(xiàn),已知AE=3,BF=5

(1)求BC的長;

(2)如果兩條對角線長的和是20,求三角形AOD的周長.

查看答案和解析>>

同步練習(xí)冊答案