如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)(m≠0)的圖象有公共點A(1,2).直線l⊥x軸于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B,C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?

解:(1)將A(1,2)代入一次函數(shù)解析式得:k+1=2,即k=1,∴一次函數(shù)解析式為y=x+1。
將A(1,2)代入反比例解析式得:m=2,
∴反比例解析式為。
(2)設(shè)一次函數(shù)與x軸交于D點,過點A作AE垂直于x軸于點E,

在y=x+1中,令y=0,求出x=﹣1,即OD=1。
∴A(1,2)!郃E=2,OE=1。
∵N(3,0),∴到B橫坐標為3。
將x=3代入一次函數(shù)得:y=4,
將x=3代入反比例解析式得:,
∴B(3,4),即ON=3,BN=4,C(3,),即CN=,
。

解析

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

如圖所示,制作某種食品的同時需將原材料加熱,設(shè)該材料溫度為y ℃,從加熱開始計算的時間為x分鐘.據(jù)了解,該材料在加熱過程中溫度y與時間x成一次函數(shù)關(guān)系.已知該材料在加熱前的溫度為4℃,加熱一段時間使材料溫度達到28℃時停止加熱,停止加熱后,材料溫度逐漸下降,這時溫度y與時間x成反比例函數(shù)關(guān)系,已知當?shù)?2分鐘時, 材料溫度是14℃.
(1)分別求出該材料加熱和停止加熱過程中y與x的函數(shù)關(guān)系式(寫出x的取值范圍);
(2)根據(jù)該食品制作要求,在材料溫度不低于12℃的這段時間內(nèi),需要對該材料進行特殊處理,那么對該材料進行特殊處理的時間為多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知y是x的反比例函數(shù),當x=5時,y=8.
(1)求反比例函數(shù)解析式;
(2)求y=-10時x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,點P1、P2、……Pn是反比例函數(shù)y=在第一象限圖像上,點A1、A2……An在X軸上,若△P1OA1、△P2A1A2……△PnAN-1AN均為等腰直角三角形,則:

(1)P1點的坐標為         
(2)求點A2與點P2的坐標;
(3)直接寫出點An與點Pn的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,一次函數(shù)的圖象與x軸,y軸分別相交于A,B兩點,且與反比例函數(shù)的圖象在第二象限交與點C,如果點A為的坐標為(2,0),B是AC的中點.

(1)求點C的坐標;
(2)求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線L經(jīng)過點A(0,﹣1),且與雙曲線c:交于點B(2,1).

(1)求雙曲線c及直線L的解析式;
(2)已知P(a﹣1,a)在雙曲線c上,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知平面直角坐標系xOy(如圖),直線經(jīng)過第一、二、三象限,與y軸交于點B,點A(2,t)在這條直線上,連接AO,△AOB的面積等于1.

(1)求b的值;
(2)如果反比例函數(shù)是常量,)的圖像經(jīng)過點A,求這個反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線l:y=x+1與x軸、y軸分別交于A、B兩點,點C與原點O關(guān)于直線l對稱.反比例函數(shù)的圖象經(jīng)過點C,點P在反比例函數(shù)圖象上且位于C點左側(cè),過點P作x軸、y軸的垂線分別交直線l于M、N兩點.

(1)求反比例函數(shù)的解析式;
(2)求AN•BM的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,上下底面為全等的正六邊形禮盒,其主視圖與左視圖均由矩形構(gòu)成,主視圖中大矩形邊長如圖所示,左視圖中包含兩全等的矩形,如果用彩色膠帶如圖包扎禮盒,所需膠帶長度至少為__________cm.(不計接縫,結(jié)果保留準確值)

查看答案和解析>>

同步練習冊答案